Астрофизика физические подходы в астрономии. Теоретическая астрофизика

34.2

Для друзей!

Справка

Астрофизика - это наука на границе астрономии и физики, учение о вселенной, о строении, физических процессах и химических свойствах небесных объектов - звезд и галактик (планет, Солнца, комет, туманностей).

Космос - малоизученное пространство, которое заставляет задаваться многими вопросами. Например, астрофизики строят предположения, что происходит внутри черных дыр, пытаются понять, что такое темная материя и каковы свойства гравитации. Поиск ответов на эти вопросы заставляет ученых проводить разные исследования. Например, в скором времени астрофизики планируют отправить колонию на Марс, а на Луне - построить сверхмощный телескоп.

Астрофизика не стоит на месте и в ближайшем будущем в ней будет сделано немало открытий.

Описание деятельности

Астрофизик - редкая и узко специализированная профессия. Востребованность ее небольшая. Но в таких всемирно известных корпорациях как Роскосмос или NASAталантливые специалисты просто необходимы.

Практически все астрофизики имеют . Все они когда-то закончили , защитили диссертационные работы, имеют научные публикации и . Связано это с тем, что астрофизики требуются, в основном, в организациях, которые занимаются научными исследованиями. Это университеты и научные институты, обсерватории и упомянутые выше корпорации Роскосомос и NASA.

В обсерваториях работает основная часть астрофизиков. Это учреждение, где фиксируют движение небесных тел. Ее расположение не случайно - она строится на возвышенной местности и в точке с лучшим обзором звездного неба. Учитываются также климат и видимость атмосферы.

Обычно обсерватория принадлежит университету либо научному институту и может находиться от них достаточно далеко. Так, главный офис Роскосмоса находится в Москве, а его обсерватории в Байконуре (Казахстан), Кисловодске и на Камчатке.

Работа в обсерватории - это, в первую очередь, наблюдение за небесными телами. Однако от способа и цели наблюдения зависят рабочие условия астрофизика.

Наблюдение за близкими к Земле космическими телами .

Сюда относится наблюдение за планетами Солнечной системы, ее спутниками, ближайшими звездами, - за всем тем, что мы можем увидеть на небе невооруженным глазом. Поскольку эти объекты находятся достаточно близко к Земле, астрофизик использует телескоп с увеличивающими линзами - благодаря многократному увеличению он может рассмотреть, к примеру, кратеры Луны, ураганы на Юпитере или кольца Сатурна.

Главное условие для такой работы - ночное время суток, поэтому астрофизик работает ночью, по 8-14 часов в зависимости от времени года.

Наблюдение за космическими телами, расположенными далеко от Земли.

Видимые звезды и планеты - всего лишь малая доля того, что есть во Вселенной. Существует множество других небесных тел, которые находятся настолько далеко от нас, что свет от них просто не доходит до Земли. Там, где находятся эти объекты, мы едва ли что-то увидим, поэтому астрофизик ищет их только по невидимым радиоволнам.

Прибор, который фиксирует эти волны - радиотелескоп. С помощью такой аппаратуры астрофизик получают данные о скоплениях межзвездного газа, пылевых облаков, реликтовом излучении (это так называемые «остатки Большого Взрыва, с которого и началось образование нашей Вселенной). Радиотелескоп позволяет «заглянуть» намного дальше нашей галактики.

Местоположение (координаты) этих объектов он получает при помощи радиоинтерфермометра - это огромное сооружение, размером с саму обсерваторию. Внешне оно напоминает локатор.

Анализ полученных данных.

Наблюдения - лишь часть большой работы, которую проделывает астрофизик. Все полученные данные он записывает, затем исследует. Такая работа происходит уже в научно-исследовательском центре или институте по будням, с утра до вечера.

Все полученные выводы астрофизик описывает, приводит к ним аргументы. Затем закладывает их в основу научно-исследовательской работы.

Космические обсерватории

Астрофизик так же может вести наблюдение за небесными телами сидя в главном офисе исследовательского центра или компании. Для этого ему не нужно дожидаться захода солнца или ясной погоды - он получает данные прямиком из космоса на свой компьютер. Полученная информация сохраняется, и специалист может взглянуть на нее в любое время. Поэтому работает он как обычный офисный сотрудник - по будням, с утра до вечера.

Данные приходят от космической обсерватории - это самостоятельный аппарат, который снабжен сверхмощными телескопами и различными датчиками. Эти аппараты летают на орбите Земли и автоматически пересылают данные с датчиков и снимки на компьютер астрофизика. Всего их 9, и большая часть их принадлежит корпорации NASA.

Информация от космических обсерваторий приходит разная. Опытному астрофизику она может сообщить не только о местонахождении объекта, но и о том, что он из себя представляет. Например, переменное гамма-излучение характерно для недавно зародившейся звезды. Рентегеновские лучи могут указывать на черные дыры, ультрафиолетовые - на скопление межзвездного газа, а инфракрасные на водяные пары и химический состав небесного тела. Недавно астрофизики с помощью инфракрасных космических обсерваторий обнаружили органические вещества за 375 световых лет от Солнца. Это значит, что кроме Земли жизнь может существовать и в других уголках нашей Вселенной.

Космические полеты

Полет в космос - огромная работа разных специалистов. Астрофизики в этом процессе исполняют важную роль. Ранее полетами в космос занимались две корпорации: Роскосмос (Россия) и NASA(США). Однако последние 5 лет американцы не отправляли своих кораблей, поэтому готовят к полету наши отечественные астрофизики.

Задача специалистов - определить цель полета и условия, с которыми придется столкнуться космонавту. Этап работы астрофизиков - самый ответственный. Они информируют главных и о физических условиях в открытом космосе (а это температура -270°C, опасные дозы радиации, давление и прочие факторы). Сообщают о местоположении обломков космического мусора, который может травмировать космонавта, о влиянии других небесных тел и возможных трудностях и препятствиях. Космос малоизвестен и опасен, однако астрофизики знают о нем больше других.

Обмен опытом

Важная часть работы хорошего астрофизика - посещение различных конференций, международных совещаний, обсерваторий, в которых трудятся его зарубежные коллеги. Это не только хорошая возможность узнать лучше об опыте других астрофизиков, но и увидеть зарубежные страны и города.

Заработная плата

средняя по России: средняя по Москве: средняя по Санкт-Петербургу:

Трудовые обязанности

Цель работы специалиста - пополнение сведений о космосе.

Трудясь астрофизиком, можно выбрать одно из направлений: теоретик - работает с архивным материалом, изучая его и формулируя выводы; практик - сам добывает данные для дальнейшего их изучения; преподаватель - передает знания через лекции, доклады, уроки.

Астрофизики следят за небесными объектами, используя современное увеличительное оборудование; создают и поясняют теории об организации космоса; исследуют экспериментальный материал; выдвигают и испытывают гипотезы; пишут научные статьи; применяют компьютерное и математическое моделирование при пояснении космических событий и феноменов; участвуют в научных симпозиумах (совещание ученых из разных стран), конференциях.

Астрофизики изучают конкретные объекты, описывают определенные физические механизмы: ускорение космических лучей, взрывы на звездах, возникновение гамма-вспышек, сверхновых звезд и т.п.

В своей работе ученые используют специальные методы: спектральный анализ (определение химического состава и физических параметров), фотография, фотометрия (определение яркости), астрономические наблюдения.

Особенности карьерного роста

Если желаете добиться профессиональных успехов и роста, необходимо непрерывно обучаться, накапливать практические знания и умения, устанавливать важные контакты. Тогда появится возможность получить хорошую должность, участвовать в международных проектах.
Разные уровни высшего образования позволяют астрофизику претендовать на разные должности:

  • (физика/астрономия) - работа

Астрофизика I Астрофи́зика

раздел астрономии, изучающий физические явления, происходящие в небесных телах, их системах и в космическом пространстве, а также химические процессы в них. А. включает разработку методов получения информации о физических явлениях во Вселенной, сбор этой информации (главным образом путём астрономических наблюдений), её научную обработку и теоретическое обобщение. Теоретическая А., занимаясь обобщением и объяснением фактических данных, полученных наблюдательной А., пользуется законами и методами теоретической физики. Совокупность методов наблюдательной А. часто называют практической А.

В отличие от физики, в основе которой лежит эксперимент, связанный с произвольным изменением условий протекания явления, А. основывается главным образом на наблюдениях, когда исследователь не имеет возможности влиять на ход физического процесса. Однако при изучении того или иного явления обычно представляется возможность наблюдать его на многих небесных объектах при различных условиях, так что в конечном счёте Л. оказывается в не менее благоприятном положении, чем экспериментальная физика. Во многих случаях условия, в которых находится вещество в небесных телах и системах, намного отличаются от доступных современным физическим лабораториям (сверхвысокие и сверхнизкие плотности, высокие температуры и т. п.). Благодаря этому астрофизические исследования нередко приводят к открытию новых физических закономерностей.

Исторически сложилось разделение наблюдательной А. на отдельные дисциплины по двум признакам: по методам наблюдения и по объектам наблюдения. Различным методам посвящены такие дисциплины, как Астрофотометрия , Астроспектроскопия , Астроспектрофотометрия , Астрополяриметрия , Астроколориметрия , Рентгеновская астрономия , Гамма-астрономия и др. Примером дисциплин, выделенных по объекту исследования, могут служить: физика Солнца (См. Солнце), физика Планет , физика туманностей галактических (См. Туманности галактические), физика звёзд и др.

По мере развития техники космических полётов в астрофизических исследованиях всё большую роль играет Внеатмосферная астрономия , основанная на наблюдениях с помощью инструментов, размещенных на искусственных спутниках Земли и космических зондах. С развитием космонавтики появилась возможность устанавливать такие инструменты также и на других небесных телах (прежде всего на Луне). На этой же основе предполагается развитие экспериментальной астрономии. На грани наблюдательной и экспериментальной астрономии находятся Радиолокационная астрономия (радиолокация метеоров, Луны, ближайших к Земле планет), а также лазерная астрономия, получающие информацию о небесных телах, используемую в А., путём их искусственного освещения пучками электромагнитных волн.

Астрофизические открытия, вскрывающие в природе новые формы существования материи и новые формы её естественные организации, являются блестящим подтверждением фундаментального тезиса диалектического материализма о качественной неисчерпаемости материи.

Ведущими центрами астрофизических исследований в СССР являются: Крымская астрофизическая обсерватория АН СССР, Астрономическая обсерватория Пулковская АН СССР Главная, Абастуманская астрофизическая обсерватория АН Грузинской ССР и Бюраканская астрофизическая обсерватория АН Армянской ССР. Важные работы в области А. ведутся также в Московском и Ленинградском университетах. Быстро развиваются астрофизические исследования в астрономических учреждениях в Алма-Ате, Душанбе, Шемахе, Риге. Возродившаяся в последние десятилетия одна из старейших обсерваторий нашей страны в Тарту (ныне в Тыравере) в основном также занимается астрофизическими исследованиями. Работы по А. ведутся также на Серпуховской радиоастрономической обсерватории (См. Серпуховская радиоастрономическая обсерватория) и на Зименковской радиоастрономической обсерватории (См. Зименковская радиоастрономическая обсерватория). Среди иностранных научных учреждений, ведущих астрофизические исследования, видное место занимают: Маунт-Паломарская астрономическая обсерватория и Ликская астрономическая обсерватория в США, обсерватория Сен-Мишель и во Франции, в Чехословакии, астрономическая обсерватория Конколи в Венгрии, радиоастрономические обсерватории в Кембридже и Джодрелл-Банке в Великобритании и в Парксе в Австралии и др.

Историческая справка. Уже во 2 в. до н. э. звёзды, видимые невооруженным глазом, были в зависимости от их блеска разделены на 6 классов (звёздные величины (См. Звёздная величина)). По существу это разделение, позже уточнённое и распространённое на более слабые звёзды и на невизуальные способы приёма излучений, легло в основу современной астрофотометрии. Ещё до изобретения телескопа были описаны солнечные протуберанцы в русских летописях (12 в.), открыты новые и сверхновые звёзды в Галактике (в частности, тщательные наблюдения Сверхновой 1572 в Кассиопее были произведены датчанином Тихо Браге и пражским астрономом Т. Гайеком), яркие кометы. Изобретение телескопа позволило получить ценные сведения о Солнце, Луне и планетах. Обнаружение фаз Венеры Г. Галилеем и атмосферы Венеры М. В. Ломоносовым имело огромное значение для понимания природы планет. Детальные исследования тёмных линий в спектре Солнца немецким учёным И. Фраунгофером (1814) явились первым шагом в получении массовой спектральной информации о небесных телах. Её ценность была признана после работ Г. Кирхгофа и Р. Бунзена (Германия) по спектральному анализу (1859-62). С начала 90-х гг. 19 в. большинство крупнейших телескопов мира было снабжено щелевыми спектрографами для изучения спектров звёзд с высокой дисперсией, и фотографирование спектров звёзд и других небесных светил составило основную часть программы наблюдений с помощью этих инструментов. Этому посвятили свои работы пионеры современной астрофизики: русский астроном А. А. Белопольский, Г. Фогель (Германия), У. Кэмпбелл и Э. Пикеринг (США) и др. В результате их исследований были определены лучевые скорости (См. Лучевая скорость) многих звёзд, открыты спектрально-двойные звёзды, найдено изменение лучевых скоростей цефеид (См. Цефеиды), заложены основы спектральной классификации звёзд (См. Спектральная классификация звёзд).

Быстрое развитие лабораторной спектроскопии и теории спектров атомов и ионов на основе квантовой механики привело в 1-й половине 20 в. к возможности интерпретации звёздных спектров и к развитию на этой основе физики звёзд и в первую очередь - физики звёздных атмосфер. Основы теории ионизации в звёздных атмосферах заложил в 1-й четверти 20 в. индийский физик М. Саха.

С начала 2-й четверти 20 в. в результате отождествления запрещенных линий в спектрах газовых туманностей и расширения исследований межзвёздного поглощения, впервые изученного русским астрономом В. Я. Струве (1847), начала быстро развиваться физика межзвёздного вещества, а методы радиоастрономии открыли для этой области А. неограниченные возможности (наблюдения радиоизлучения нейтрального водорода с длиной волны 21 см и др.).

Уже в 20-х гг. 20 в., благодаря работам Э. Хаббла (США), была окончательно доказана внегалактическая природа спиральных туманностей. Эти небесные объекты, Галактики , представляющие собой гигантские конгломераты звёзд и межзвёздного вещества, изучают как оптическими, так и радиоастрономическими методами; оба метода дают одинаково важную и взаимно дополняющую информацию, хотя последний и уступает первому в отношении количества информации. С конца 40-х гг. 20 в. для фотографирования неба стали применять крупные рефлекторы, обладающие большим полем зрения (телескопы Шмидта и Максутова), благодаря чему появилась возможность массового изучения галактик и их скоплений. Исследования, выполненные на Маунт-Паломарской обсерватории в США (В. Бааде, Цвикки, Сандидж), на Бюраканской астрофизической обсерватории АН Армянской ССР (В. А. Амбарцумян, Б. Е. Маркарян и др.) и в Астрономическом институте им. П. К. Штернберга в Москве (Б. А. Воронцов-Вельяминов), а также наблюдения на радиоастрономических обсерваториях в Кембридже (Великобритания) и в Парксе (Австралия) вскрыли огромное разнообразие форм галактик и проходящих в них физических процессов. Открытие во 2-й половине 50-х гг. грандиозных взрывных процессов, являющихся проявлением активности ядер галактик, поставило перед теоретическую А. задачу их объяснения. В 1-й половине 60-х гг. были открыты квазизвёздные радиоисточники (квазары). Изучение квазаров и ядер галактик показало, что и те и другие по своей природе в корне отличаются от звёзд, планет и межзвёздной пыли или газа. Новые явления, наблюдаемые в них, настолько своеобразны, что к ним не всегда применимы сложившиеся физические представления. Благодаря этим и ряду других открытий А. переживает, по существу, революцию, по своему значению сравнимую с революцией в астрономии времён Коперника - Галилея - Кеплера - Ньютона и с тем переворотом, который пережила физика в 1-й трети 20 в. Развитие внеатмосферной астрономии значительно обогатило методы планетной астрономии, фотографирование обратной стороны Луны (1959, СССР), первый запуск научной аппаратуры на Луну и получение снимков лунных пейзажей (1966, С1ССР), снимки Марса с близкого расстояния (1965, США), достижение советским космическим зондом нижних слоев атмосферы Венеры (1967, СССР), высадка космонавтов на Луну и начало прямых исследований лунного грунта (1969, США) - таковы первые выдающиеся результаты в этой области астрономии.

Исследования тел Солнечной системы . Среди больших планет наиболее полно изучена Земля, являющаяся предметом исследований геофизики (См. Геофизика). Сведения об остальных восьми планетах до середины 20 в. оставались относительно скудными. Однако развитие исследований, опирающихся на наблюдения с помощью космических зондов, позволит уже в ближайшем будущем изменить это положение. При решении различных задач, связанных с изучением строения и состава планетных атмосфер наземными методами, в А. часто применяют те же наблюдательные и теоретические методы, что и в геофизике (в частности, методы изучения верхних слоев земной атмосферы). Особенный интерес представляют спектральные исследования планет, обладающих атмосферным покровом. В результате таких исследований установлены коренные различия в составе атмосфер планет. В частности, выяснилось, что в атмосфере Юпитера основной составляющей является аммиак, в атмосфере Венеры - углекислый газ, в то время как на Земле преобладают молекулярные азот и кислород. Обнаружение больших кратероподобных образований на Марсе (с помощью космических зондов «Маринер», США) ставит задачу создания общей теории возникновения рельефа на планетах и Луне. Существуют две противоположные теории происхождения кратеров на Луне и Марсе. Одна приписывает их образование вулканизму, другая - удару гигантских метеоритов. В результате открытия новых свидетельств в пользу вулканизма на Луне первая из них находит всё больше сторонников. Сведения об особенностях рельефа планет, а также о законах их вращения и некоторые др. доставляют радиолокационные наблюдения [В. А. Котельников (СССР) и др.].

Большинство спутников планет, так же как и все малые планеты, не имеет атмосфер, т. к. сила тяжести на их поверхности недостаточна для удержания газов на них. Малые же угловые размеры этих тел не позволяют изучать; детали их поверхностей. Поэтому единственная информация о физике этих тел основана на измерениях их интегральной отражательной способности в различных участках спектра. Изменения их блеска дают нам сведения об их вращении.

Большой интерес представляют собой явления, возникающие при приближении комет к Солнцу. В результате процессов сублимации, происходящих под воздействием солнечного излучения, из ядра кометы выделяются газы, образующие обширную голову кометы. Воздействие солнечного излучения и, по-видимому, солнечного ветра (См. Солнечный ветер) обусловливает образование хвоста, иногда достигающего миллионов километров в длину. Выделенные газы уходят в межпланетное пространство, вследствие чего при каждом приближении к Солнцу комета теряет значительную часть своей массы. В связи с этим кометы, особенно короткопериодические, рассматриваются как объекты, обладающие небольшой продолжительностью жизни, измеряемой тысячелетиями или даже столетиями (С. К. Всехсвятский и др.). Изучение происхождения и развития системы комет позволит сделать заключения, относящиеся к эволюции всей Солнечной системы.

Физика Солнца . Физические процессы, происходящие в Солнце, практически независимы от воздействия окружающей среды. Развитие Солнца, по крайней мере в нынешнюю эпоху, обусловлено его внутренними закономерностями. Выяснено, что внутри Солнца, так же, как и внутри всех звёзд, имеются источники тепловой энергии (ядерной природы), благодаря которым вещество Солнца (звёзд) нагревается до высокой температуры. Вследствие этого происходит испускание лучистой энергии наружу. Устанавливается равновесие между мощностью излучения Солнца (звёзд) и суммарной мощностью находящихся в нём источников тепловой энергии. В то же время проявления солнечной активности - излучения Солнца, испускание им потоков частиц с «вмороженными» в них магнитными полями - оказывает существенное влияние на развитие всех тел Солнечной системы. Объектами детального изучения являются различные образования в атмосфере Солнца: солнечные пятна, факелы, протуберанцы. Особый интерес представляют кратковременные хромосферные вспышки, длящиеся обычно несколько десятков минут и сопровождающиеся выделением значительного количества энергии. Корпускулярные потоки, связанные с активными областями Солнца, были изучены на Крымской астрофизической обсерватории АН СССР (Э. Р. Мустель). Во внешних слоях Солнца происходят постоянные изменения магнитных полей. Исследования, проведённые на этой же обсерватории (А. Б. Северный), позволили установить связь между вспышками и быстрыми изменениями в строении магнитного поля в данной части солнечной поверхности. Теоретические исследования показали, что перенос энергии в Солнце (так же, как и в звёздах) происходит главным образом путём испускания и поглощения излучения. На этом выводе построена теория лучистого равновесия Солнца, относящаяся как к внешним, так и к внутренним слоям Солнца.

Важнейший вопрос физики Солнца (так же, как и звёзд) - природа источников энергии. Энергия гравитационного сжатия оказалась недостаточной. Гипотеза, по которой источником солнечной энергии являются термоядерные реакции, с количеств, стороны может удовлетворительно объяснить излучение в течение миллиардов лет; тем не менее она нуждается в окончательной проверке. Полное выяснение природы источников солнечной и звёздной энергии будет иметь огромное значение для решения вопросов эволюции Солнца и звёзд.

Ввиду научного значения изучения физических процессов, происходящих в поверхностных слоях Солнца, и их влияния на верхние слои земной атмосферы, обсерватории многих стран объединились для систематического наблюдения этих процессов всеми доступными методами, организовав круглосуточную службу Солнца.

Физика звёзд . При изучении звёзд важную роль играют представления о строении Солнца, которые модифицируются таким образом, чтобы они удовлетворяли фотометрическим и особенно спектральным данным о звёздах. Вследствие разнообразного характера спектральной информации в конечном счёте удаётся найти однозначное решение этой проблемы. К настоящему времени классифицированы спектры более чем миллиона звёзд. Спектральная классификация звёзд была впервые разработана в начале 20 в. на Гарвардской обсерватории (США), а затем совершенствовалась и уточнялась. Главным признаком при этой классификации является наличие тех или иных спектральных линий и их относительные интенсивности.

Интересными объектами являются т. н. белые карлики, имеющие относительно высокую поверхностную температуру (от 7000° до 30 000°) и низкую светимость, во много раз меньшую светимости Солнца (см. Светимость звезды). Средние плотности некоторых белых карликов более чем в миллион раз превосходят плотность воды. В дальнейшем теоретически была установлена возможность конфигураций звёздных масс, состоящих из вырожденного газа нейтронов и даже пшеронов. Плотности таких конфигураций должны достигать 10 14 -10 15 плотности воды. Однако в течение многих лет такие конфигурации не смогли быть обнаружены. Лишь в 1967 были обнаружены Пульсары - объекты, испускающие с периодом переменности, измеряемым в одних случаях секундами, а в других - долями секунды. Имеются серьёзные основания предполагать, что это и есть сверхплотные конфигурации.

Особый интерес представляют Переменные звёзды , у которых меняется блеск и спектр. В тех случаях, когда такие изменения носят периодический или приблизительно периодический характер, они объясняются пульсациями, т. е. последовательными расширениями и сжатиями звезды. Более глубокие изменения происходят в нестационарных звёздах (См. Нестационарные звёзды), многие из которых являются молодыми звёздами, находящимися в процессе становления. Важное значение имеют звёзды типа RW Возничего, обнаруживающие совершенно неправильные изменения блеска и входящие в состав Т-ассоциаций (см. Звёздные ассоциации), возраст которых не превосходит 10 млн. лет. На более поздней стадии развития многие из этих звёзд, имея нормально постоянную яркость, переживают время от времени вспышки, длящиеся всего несколько мин, когда их яркость увеличивается до нескольких раз, а иногда (в коротковолновой части спектра) в сотни раз. Примером звезды, находящейся в этой стадии, является переменная звезда UV Кита. В то время как нормальное излучение звёзд имеет чисто тепловую природу, энергия, выделенная во время вспышек, имеет явно нетепловое происхождение. Ещё более грандиозные процессы выделения энергии происходят при вспышках новых звёзд (См. Новые звёзды) и сверхновых звёзд (См. Сверхновые звёзды). Во время вспышек сверхновых за промежуток времени порядка 1 мес выделяется 10 42 дж (10 49 эрг ). Во время вспышек новых и сверхновых звёзд происходит выбрасывание расширяющихся газовых оболочек. Вспышки так называемых новоподобных переменных звёзд, в частности звёзд типа SS Лебедя, занимают по масштабам промежуточное положение между вспышками новых звёзд и звёзд типа UV Кита.

Физика туманностей. Довольно подробно изучены физические процессы, происходящие в газовых туманностях, освещенных горячими звёздами. Эти процессы сводятся по существу к флуоресценции под влиянием ультрафиолетового излучения горячих звёзд. Что касается газовых туманностей, не освещенных горячими звёздами, то их исследование возможно благодаря тому, что они излучают радиолинию водорода с длиной волны 21 см. В большинстве газовых туманностей присутствует также и пылевое вещество, состоящее из твёрдых частиц. Если газопылевая туманность освещена звездой относительно низкой температуры, излучение которой не может вызвать флуоресценцию газа, то наблюдается отражение света освещающей звезды от пылевой компоненты туманности. В таких случаях спектр туманности является репродукцией спектра звезды. В Галактике наблюдаются также радиотуманности, испускающие непрерывный спектр в радиодиапазоне; такое излучение связано с торможением релятивистских электронов в магнитных полях - так называемое синхротронное излучение (исследования советского астронома И. С. Шкловского и др.). Эти туманности возникли вследствие вспышек сверхновых звёзд; таковы Крабовидная туманность и радиоисточник Кассиопея А. Продолжительность их жизни измеряется всего тысячами, а иногда даже только сотнями лет.

Физика внегалактических объектов. В начале изучения галактики рассматривались как механические конгломераты звёзд и туманностей. Поэтому обсуждались лишь вопросы их внутренней кинематики и динамики. Однако вскоре было выяснено, что существует определённая связь между формой галактик (эллиптическая, спиральная, неправильная) и классами входящих в них звёзд («звёздного населения»), в частности наличием в них молодых звёзд - голубых гигантов. В рукавах спиральных галактик наблюдаются большие неоднородности, О-ассоциации, представляющие собой системы, состоящие из молодых звёзд и туманностей. Их возникновение связано, по-видимому, с глубокими физическими процессами, при которых большие массы до-звёздного вещества превращаются в обычные звёзды. Изучение этих процессов является одной из труднейших нерешенных проблем А.

Начиная с середины 20 в. стала выявляться большая роль ядер галактик в их эволюции. Установлено существование различных форм активности ядер, в частности гигантские взрывы, при которых выбрасываются огромные облака релятивистских электронов. В результате таких взрывов обычные галактики превращаются в радиогалактики. Происходит также выбрасывание облаков и струй обычного газа. Все эти явления свидетельствуют о том, что в ядрах галактик происходят весьма глубокие процессы превращений вещества и энергии.

Открытие квазизвёздных источников радиоизлучения (квазаров), так же как квазизвёздных чисто оптических объектов, привело к обнаружению ещё более глубоких процессов. Прежде всего оказалось, что среди квазаров имеются объекты, которые испускают в 10 13 раз более мощное излучение, чем Солнце, и в сотни раз более яркое, чем сверхгигантские галактики. Квазары испытывают относительно быстрые изменения блеска, что говорит об их небольших диаметрах (непрерывный спектр излучается из объёма диаметром не более 0,2 парсек ). Во многих отношениях квазары схожи с наиболее активными ядрами галактик, только масштабы явлений в них больше. Массы квазаров неизвестны. Однако, рассматривая их как очень большие, изолированные ядра, можно принять, что они составляют 10 11 масс Солнца и больше.

Теоретическая астрофизика. Цель теоретической А. - объяснение изучаемых А. явлений на основе общих законов физики. При этом она пользуется как методами, уже разработанными в теоретической физике, так и специальными методами, разработанными для изучения явлений в небесных телах и связанными со специфическими свойствами этих тел. Поскольку вся информация об астрофизических процессах получается на основе регистрации достигающего нас излучения, то первая задача теоретической А. - прямое истолкование результатов наблюдений и составление на первом этапе внешней картины развёртывающегося процесса (например, наблюдения блеска и спектров новых звёзд удалось истолковать на основе представления о выбросе наружных слоев звезды в окружающее пространство). Однако конечная её цель - выяснение механизма и причин явления (в приведённом примере - причины взрыва, который приводит к выбрасыванию оболочки). Основным отличием процессов, изучаемых А., в большинстве случаев является существенная роль взаимодействия вещества с излучением. Поэтому теоретическая А., наряду с решением конкретных задач, разрабатывает также общие методы исследования этого взаимодействия. В то время, как теоретическая физика интересуется элементарными процессами этого типа, А. изучает результаты многократного и сложного взаимодействия в больших системах; так, теория переноса излучения в материальной среде, которая применяется и в других разделах физики, достигла большого совершенства именно в А. Успешное развитие в трудах советских астрономов В. В. Соболева и др. теории переноса излучения в спектр, линиях позволило установить точные закономерности образования в звёздных атмосферах линий поглощения и линий излучения. Таким образом стала возможной количественная интерпретация звёздных спектров. Разработаны также общие методы вычисления состояний равновесия звёздных масс. Большие работы по конфигурациям равновесия газовых звёзд выполнены М. Шварцшильдом (США) и А. Г. Масевич (СССР). Теория вырожденных конфигураций, в которой учитывается вырождение электронного газа, была разработана во 2-й четверти 20 в. Э. Милном (Великобритания) и С. Чандрасекаром (Индия). В случае сверхплотных конфигураций (в которых вырожден уже барионный газ) расчёты следует вести на основе общей теории относительности. Эти вопросы так же, как и теоретические исследования, касающиеся процесса расширения Вселенной в целом, составляют новую отрасль теоретической А., получившую название релятивистской астрофизики (См. Релятивистская астрофизика).

Результаты астрофизических исследований публикуются главным образом в трудах обсерваторий, а также в специальных журналах, среди которых основные: «Астрономический журнал» (М., с 1924), «Астрофизика» (Ер., с 1965), «Astrophysical Journal» (Chi., с 1895), «Monthly Notices of the Royal Astronomical Society» (L., с 1827), «Annales d"astrophysique» (P., с 1938-68), «Zeitschrift fur Astrophysik» (В., с 1930-44) и др.

Лит.: Курс астрофизики и звездной астрономии, т. 1-3, М.-Л., 1951-64; Соболев В. В., Курс теоретической астрофизики, М., 1967; Амбарцумян В. А., Проблемы эволюции Вселенной, Ер., 1968; Развитие астрономии в СССР, М., 1967; Струве О. В., Зебергс В., Астрономия 20 в., пер. с англ., М., 1968; Зельдович Я. Б. и Новиков И. Д., Релятивистская астрофизика, М., 1968.

В. А. Амбарцумян.

II Астрофи́зика («Астрофи́зика»,)

научный журнал Академии наук Армянской ССР. Издается в Ереване. Основан в 1965, выходит 4 раза в год. Публикует статьи по физике звёзд, туманностей и межзвёздной среды, по звёздной и внегалактической астрономии и по смежным с астрофизикой вопросам.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Была предметом весь-ма абстрактных умозрительных рассуждений. Что в действи-тельности происходит на них, почему и как они светят — такие вопросы нельзя было даже ставить. Положение пре-красно характеризовалось известным изречением древнего философа: «Если хочешь заниматься астрономией, не спра-шивай, что такое звёзды!» Положение стало меняться в 30-х гг. XIX в., когда были определены первые расстояния до звёзд.

Радиотелескопы легко объединить в сеть. Это могут быть телескопы, расположенные в разных частях Земли или в не-посредственной близости. Совместная их работа позволяет по-лучить интерферометры с базой в несколько тысяч (!) кило-метров или эквивалент зеркала диаметром во многие сотни ме-тров. С помощью таких телескопов можно получить разреше-ние, сравнимое с тем, которое дают оптические телескопы, или даже лучше.

С началом космической эры (1957 г.) начались исследова-ния в ранее недоступных диапазонах излучения: инфракрас-ном, ультрафиолетовом, рентгеновском. Особое значение име-ет единственный пока космический телескоп Хаббла. С введением в строй 10-метровых телескопов астрономы получили оптическое разрешение, сравнимое с разрешением космического телескопа, но по-прежнему лишь космическому телескопу доступны ультрафиолетовый и инфра-красный диапазоны.

АСТРОФИЗИКА

Основы теоретической астрофизики

Методы практической астрофизики

Краткие исторические сведения

Современные проблемы астрофизики

А.- раздел астрономии, изучающий физ. состояние и хим. состав небесных тел и их систем, межзвёздной и межгалактич. сред, а также происходящие в них процессы. Осн. разделы А.: физика планет и их спутников, физика Солнца, физика звёздных атмосфер, межзвёздной среды, теория внутр. строения звёзд и их эволюции. Проблемы строения сверхплотных объектов и связанных с ними процессов (захват вещества из окружающей среды, аккреционные диски и др.) и задачи космологии рассматривает релятивистская А.

В отличие от физика-экспериментатора астрофизик-наблюдатель не имеет возможности влиять на ход изучаемого им процесса. Тем не менее он может делать вполне определ. заключения, сравнивая между собой сходные явления, происходящие на MH. небесных объектах. Более того, А. изучает свойства и поведение вещества в условиях, к-рые зачастую не могут быть реализованы в земных лабораториях, и это способствует углублению представлений о закономерностях строения и эволюции окружающего нас мира и его отд. частей. Так, изучение спектров газовых туманностей , вещество и излучение в к-рых находятся в исключительно разреженном состоянии, привело к открытию метастабильных уровней энергии атомов, возможностей переходов между близкими весьма высокими энергетич. уровнями в атомах водорода, гелия и др. Изучение белых карликов и пульсаров привело к выводу, что вещество звёзд может находиться в состояниях, принципиально отличных от известных нам, а его плотность может достигать плотности атомного ядра. Установление же природы источников энергии звёзд поставило вопрос о практич. реализации управляемого термоядерного синтеза на Земле.

Основы теоретической астрофизики

При разработке теорий и моделировании явлений, наблюдающихся во Вселенной, теоретич. А. использует законы и методы теоретич. физики, в частности законы теплового излучения, установленные для абс. чёрного тела, теорию атомных спектров, ф-лы Л. Больцмана (L. Boltzmann) и M. Саха (M. Saha) для определения кол-ва атомов, находящихся соответственно в возбуждённом и ионизованном состояниях, ф-лу Дж. К. Максвелла (J. С. Maxwell) для описания распределения атомов по скоростям, а также ф-лу К. Доплера (Ch. Doppler), позволяющую по смещению длины волны в спектре звёзд или галактик найти лучевую скорость их движения относительно наблюдателя или, изучая профили спектральных линий, определить физ. характеристики атмосфер звёзд и планет.

Долгое время при построении моделей звёзд и их атмосфер принимались во внимание лишь два фактора - тяготение и упругость газа. В кон. 40-х гг. 20 в. стала очевидной необходимость учёта эл--магн. сил. Ими, в частности, определяются состояние внеш. слоев Солнца, структура его короны, динамика протуберанцев , существование солнечных пятен и, главное, такие мощные процессы, как вспышки на Солнце . Осн. идеи магнитной гидродинамики сформулированы в 1942 X. Альвеном (H. Alfven), он же установил существование магнитогидродинамич. волн. Ныне космич. - один из важнейших разделов теоретич. А.

В сер. 20 в. было установлено, что существует ещё один фактор, существенно влияющий на динамику межзвёздной среды и её энергетич. баланс,- космические лучи (КЛ), т. е. ядра атомов и электроны, ускоренные до субсветовых скоростей. КЛ образуются при вспышках на Солнце, вспышках новых и сверхновых звёзд; по-видимому, мощными ускорителями частиц являются пульсары, квазары и ядра активных галактик.

Исключит. значение для понимания происходящих во Вселенной процессов, для установления природы MH. космич. объектов имел сделанный в сер. 20 в. вывод о том, что регистрируемое наблюдателем излучение может быть нетепловым. Прежде всего, нетепловое эл--магн. излучение генерируется в результате торможения релятивистских электронов в магн. полях (синхротронное излучение) . В космич. пространстве и вблизи нек-рых объектов происходит рассеяние фотонов на релятивистских электронах (обратный комптон-эффект), причём процессы рассеяния могут происходить и на породивших эти фотоны электронах. Нетепловое эл--магн. излучение генерируется также при переходе электронов из одной среды в другую (переходное излучение )и при рассеянии плазменных волн, в частности продольных плазмонов ,на релятивистских электронах. Теория этих процессов уже достаточно разработана, в частности благодаря успехам плазменной А., задачей к-рой является анализ поведения плазмы в разл. астрофиз. объектах.

И, наконец, важная составная часть теоретич. А.- ядерная астрофизика ,изучающая и радиоактивный распад неустойчивых ядер в звёздах и др. космич. объектах, в результате к-рых происходит выделение энергии и образование хим. элементов. Одним из продуктов ядерных реакций являются нейтрино и , к-рые практически беспрепятственно уходят из ядра звезды в космич. пространство, унося с собой часть освободившейся энергии. Установлено, что на определ. этапе жизни звезды, если только её масса превышает нек-рый предел, эти потери на высвечивание нейтрино могут быть столь большими, что равновесие звезды нарушается и происходит гравитационный коллапс ,итогом к-рого является вспышка сверхновой с образованием нейтронной звезды или чёрной дыры .

Методы практической астрофизики

Астрофиз. наблюдения и исследования проводятся на астр. обсерваториях с помощью оптич. телескопов (как рефракторов, так и рефлекторов, диаметры зеркал у последних достигают 4-6 м). Планируется создание гигантских мультизеркальных наземных телескопов с эквивалентными диаметрами зеркал до 25 м и проницающей силой до 26 m . С выводом на околоземную орбиту телескопов с диаметром зеркал ок. 2,5 м, для наблюдений станут доступными объекты до 29 m .

С сер. 19 в. в А. используется фотографич. метод наблюдений. Фотоэмульсия способна накапливать энергию излучения, на ней одноврем. могут быть зафиксированы сотни и тысячи светил. Однако теоретич. действующий (ДКВ) совр. фотоэмульсий не превышает 4%, в астрофотометрии он составляет ок. 0,1%, что существенно затрудняло изучение слабых источников света, особенно их спектров.

С сер. 20 в. широко используются в А. фотоэлектрич. приёмники излучения. С 1953 измерение блеска звёзд, звёздных скоплений, галактик и квазаров проводится с помощью широкополосных светофильтров - ультрафиолетового (U) , синего (В )и жёлтого (V )(трёхцветная фотометрич. система UBV) . В последующем система была расширена в далёкую ИК-часть спектра. Фотоэлектрич. метод с применением светофильтров даёт возможность судить о распределении энергии в отдельных спектральных интервалах и в нек-рой степени заменяет спектральные наблюдения. При этом если перед камерой установлена призма или . решётка, то регистрация излучения от объекта проводится одноврем. в неск. интервалах длин волн.

В качестве усилителей яркости изображения (в 10 4 - 10 7 раз) используются простые и каскадные электронно-оптич. преобразователи (ЭОП) и электронные камеры. Активно внедряются для нужд А. волоконная оптика, твердотельные приёмники излучения и др. Широкое применение в А. нашла телевиз. астрофотометрия. ДКВ телевиз. системы в неск. десятков раз больше, чем у обычной фотоэмульсии. При этом, в частности, используются аналого-цифровые системы, в к-рых видеосигнал преобразуется в цифровой код и затем поступает в ЭВМ. Телевиз. приёмники излучения позволяют проводить изучение слабых источников, в т. ч. осуществлять патруль вспышек сверхновых в др. галактиках, причём за одно ночное наблюдение становится возможным получить неск. десятков и даже сотен фотографий этих объектов. По-видимому, использование телевиз. аппаратуры на больших телескопах позволит вскоре измерять блеск слабых звёзд (до 24 m) при экспозиции всего 1-2 ч.

С кон. 40-х гг. 20 в. началось развитие радиофиз. методов, благодаря к-рым стало доступным для изучения космич. эл--магн. излучение в интервале от дека-метровых до субмиллиметровых волн, т. е. в диапазоне длин волн в 2500 раз более широком, чем оптический. Благодаря освоению радиодиапазона открыты многочисл. источники нетеплового радиоизлучения - радиогалактики и квазары, импульсные источники радиоизлучения - пульсары, проведено изучение распределения нейтрального и ионизованного водорода в нашей и др. галактиках. Выведение за пределы атмосферы на ИСЗ и автоматич. межпланетных станциях (AMC) детекторов КВ-излучения сделало возможным изучение космич. объектов в УФ-, рентгено- и гамма-диапазонах. Открыты неск. сотен источников рентг. излучения (в т. ч. импульсные - барстеры) , зарегистрированы мощные гамма-всплески ,природа к-рых окончательно не Установлена.

Краткие исторические сведения

Первыми астрофиз. исследованиями можно считать введение Гиппархом (2 в. до н. э.) понятия звездная величина и разделение видимых невооружённым глазом звёзд на 6 классов в зависимости от их блеска. Ряд астрофиз. сведений получен после изобретения в 1609, Г. Галилеем (G. Galilei) телескопа: сформированы определ. представления о природе поверхности Луны (Галилей), осуществлены первые опыты разложения солнечного света стеклянной призмой (И. Ньютон, 1662) и первые наблюдения спектра Венеры (Ньютон, 1669), установлено наличие плотной атмосферы у Венеры (M. В. Ломоносов, 1761), сформулированы законы фотометрии [И. Ламберт (J. H. Lambert), 1760], проведены систематич. наблюдения неск. переменных звезд , в т. ч . открыта переменность звезды 8 Цефея [Дж. Гудрайк (J. Goodricke), 1794].

Подлинная история А. началась с 1802, когда У. Волластон (W. Wollaston) обнаружил, что спектр Солнца пересечён тёмными линиями. В 1814 Й. Фраунгофер (J. Fraunhofer) детально описал неск. сотен тёмных линий солнечного спектра и установил, что они присущи также спектру Луны и планет, причём положение одной из них совпадает с линией масляного пламени. Методы спектрального анализа были развиты в 1859-62 Г. Кирхгофом (G. Kirchhoff) и P. Бунзеном (R. Bunsen). В 1868 Дж. H. Локьер (J. N. Lockyer) обнаружил в спектре хромосферы Солнца линию ранее неизвестного элемента - гелия. В 1863 А. Секки (A. Secchi) начал систематизацию звёзд по особенностям их спектров. В 1-й четв. 20 в. построены модели атмосфер звёзд с учётом лучистого переноса энергии и сформулирован критерий конвективной неустойчивости [К. Шварцшильд (К. Schwarzschild) и А. Шустер (A. Schuster), 1905], дано объяснение спектральной последовательности звёзд на основе теории атомов [Э. Милн (E. Milne), M. Саха, 1921-23], установлен принцип инвариантности в теории переноса излучения и созданы основы точных методов этой теории [В. А. Амбарцумян, В. В. Соболев, С. Чандрасекар (S. Chandrasekhar), 1943-49].

В 1869 Дж. X. Лейн (J. H. Lane), исходя из представления, что Солнце - огромный газовый шар, в к-ром давление возрастает по направлению к центру, впервые оценил темп-ру его поверхности, а в 1878-83 А. Риттер (G. A. D. Ritter) выполнил серию работ по теории гравитац. равновесия и пульсации газовых шаров. Вскоре была построена теория политропных газовых шаров , сформулирована полная система ур-ний теории внутр. строения звёзд [А. Эддингтон (A. S. Eddington), 1916]. В 1934 была высказана гипотеза о возможности существования нейтронных звёзд [В. Бааде (W. Baade), Ф. Цвикки (F. Zwicky)]. затем проведены первые расчёты моделей нейтронных звёзд, выяснена принципиальная возможность гравитац. коллапса [Г. Волков (G. M. Volkoff), P. Оппенгеймер (R. Oppenheimer), X. Снайдер (H. Snyder), 1938-39], заложены основы теории термоядерных реакции в звёздах и построены первые модели звёзд, в т. ч. красных гигантов, с учётом термоядерных реакций [Г. Гамов, С. Чандрасекар, M. Шварцшильд (M. Schwarzschild) и др., 1941-45], исследованы строение и энергетика белых карликов , установлен механизм пульсаций цеферид (С. А. Жевакин, 1953), открыты пульсары [А. Хьюиш (A. Hewish) и др., 1967], а в 1974 - глобальные колебания Солнца с периодом 160 мин (А. Б. Северный с сотрудниками).

При изучении межзвёздной среды был установлен критерий гравитационной неустойчивости [Дж. Джине (J. H, Jeans), 1902], отождествлены запрещённые линии в спектрах туманностей [А. Боуэн (I. S. Bowen), 1927], подтверждён сделанный ещё в 1847 В. Я. Струве вывод о в межзвеодной среде , разработана теория свечения планетарных и газовых туманностей [В. А. Амбарцумян, Г. Занстра (H. Zanstra), 1931-34], открыто существование зон ионизованного водорода вокруг горячих звёзд [Б. Сдрёмгрен (В. G. D. Stromgren), 1939], предсказано радиоизлучение нейтрального водорода на волне 21 см и рекомбинац. излучение ионизованного водорода (H. С. Кардашёв, 1959; см. Рекомбинационные радиолинии ),сыгравшие исключительно важную роль в изучении распределения нейтрального и ионизованного водорода в нашей и др. галактиках; предсказана возможность наблюдений в радиодиапазоне линий, принадлежащих молекулам межзвёздного пространства (И. С. Шкловский, 1949), дана интерпретация нетеплового радиоизлучения Галактики как синхротронного излучения (X. Альвен, В. Л. Гинзбург, И. С. Шкловский и др., 1950-52).

В 1912 были начаты измерения красных смещений линий в спектрах "спиральных туманностей" [В. Слайфер (V. M. Slipher)], было доказано, что эти объекты являются на самом деле гигантскими звёздными системами - галактиками [Э. Хаббл (E. P. Hubble), 1924], установлено расширение наблюдаемого мира галактик со скоростями, прямо пропорциональными их расстояниям от наблюдателя (Э. Хаббл, 1929), на основе общей теории относительности разработана теория расширяющейся Вселенной (А. А. Фридман, 1922). В 60-х гг. открыты квазизвёздные радиоисточники - квазары , квазизвёздные галактики - квазаги (А. Сандидж), реликтовое радиоизлучение , послужившее подтверждением модели "горячей Вселенной" (Г. Гамов, Я. Б. Зельдович и др.).

Современные проблемы астрофизики

Начиная с 60-х гг. 20 в. при помощи аппаратуры, установленной на ИСЗ и AMC, были получены важные сведения о планетах Солнечной системы и их спутниках, в частности о физ. состоянии и хим. составе атмосфер и поверхностных слоев двух ближайших планет - Венеры и Марса, подробно исследован спутник Земли - Луна, существенно углублены представления о природе процессов, происходящих на поверхности и в недрах Солнца и др. звёзд, в межзвёздной среде и в мире галактик. Одна из важнейших проблем совр. А.- разработка теории гидромагнитного динамо с целью объяснения солнечного магнетизма, в т. ч. механизма генерации и усиления магн. поля во внутр. слоях Солнца, механизмов формирования и поддерживания устойчивости солнечных пятен, колебания полярности с периодом в 22 года. В 60-х гг. на основе теории токовых слоев удалось сделать первые шаги в объяснении солнечных вспышек, динамики протуберанцев и солнечной короны в целом. Пока нельзя считать полностью решённой проблему солнечных нейтрино, а следовательно и внутр. строения Солнца.

Располагающиеся на краях нек-рых газовых туманностей источники мощного излучения в отд. линиях молекул межзвёздного газа - космические мазеры (см. Мазерный эффект -)служат доказательством происходящих и в наше время процессов звездообразования в Галактике. С помощью быстродействующих ЭВМ удалось создать "сценарии" эволюции звёзд от начала сжатия фрагмента газопылевого облака (протозвезды) до её заключит. стадии - медленного сброса звездой оболочки (стадия планетарной туманности )и образования белого карлика или (при большой массе звезды) вспышки сверхновой с образованием нейтронной звезды (или чёрной дыры). Однако пока существует полная неясность относительно деталей процесса перемешивания вещества на конвективной стадии сжатия протозвезды, не исследована роль вращения и магн. полей облака, окончательно не установлен верх. предел массы устойчивой нейтронной звезды. Не разработан в деталях механизм ускорения частиц в пульсарах. Пока нет объяснения активности ядер галактик, неясной остаётся природа квазаров. Требует уточнения вопрос о природе ядра нашей Галактики как двойной сверхмассивной системы (двойная чёрная дыра или чёрная дыра и компактное звёздное скопление), активно взаимодействующей с окружающими её звёздами.

В релятивистской А. до конца не решены вопросы о барионной асимметрии Вселенной , о величине отношения числа ядер и электронов к числу фотонов, о роли нейтрино, а возможно, и других пока неизвестных частиц в образовании наблюдаемой структуры Вселенной, состояния вакуума и фазовых переходов в эволюции горячей Вселенной.

Лит.: Мартынов Д. Я., Курс практической астрофизики, 3 изд., M., 1977; его же, Курс общей астрофизики, 3 изд., M., 1979; Соболев В. В., Курс теоретической астрофизики, 3 изд., M., 1985; Гинзбург В. Л., Современная астрофизика, M., 1970; его же, Теоретическая физика и астрофизика, M, 1975; Зельдович Я. Б., Новиков И. Д., Теория тяготения и , M., 1971; их же, Строение и эволюция Вселенной, M., 1975; Ленг К., Астрофизические формулы, ч. 1-2, пер. с англ., M., 1978; На переднем крае астрофизики, пер. с англ., M., 1979; Имшенник В. С., Hадёжин Д. К., Конечные стадии эволюции ввеад и вспышки сверхновых, в кн.: Итоги науки и техники, сер. Астрономия, т. 21, M., 1982; Зельдович Я. Б., Структура Вселенной, там же, т. 22, M., 1983. И. А. Климишин .

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

«МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ»

Гуманитарно-Прикладной Институт

Институт Лингвистики

«Современные проблемы астрофизики»

Студент группы ГП-01-13

Белоусова О.С.

Преподаватель: Курилов С.Н.

Оценка за реферат: « »

Москва, 2013

Астрофизика. 3

Цель астрофизики. 5

Современна астрофизика. 5

Астрофизика.

Наука астрофизика - часть астрономии, занимающаяся исследованием далеких космических объектов и явлений физическими методами. Один из основных методов астрофизики- спектральный анализ. Астрофизика нацелена на создание физической картины окружающего мира, объясняющей наблюдаемые явления, на изучение происхождения и эволюции как отдельных классов астрономических объектов, так и Вселенной как единого целого в рамках известных физических законов.

Поскольку прямые контакты научных приборов с изучаемыми объектами практически исключены, основу астрофизики, как и астрономии в целом, составляют наблюдения и анализ принимаемого излучения далеких источников. Непосредственные результаты наблюдений, как правило, сводятся к относительным или абсолютным измерениям энергии, приходящей от источника или его отдельных частей, в определенных интервалах спектра.

Саму астрофизику можно разделить на два вида:

    Наблюдательная астрофизика

    Теоритическая астрофизика

Наблюдательная астрофизика:

Основная часть данных в астрофизике получается по наблюдению объектов в электромагнитных лучах. Исследуются как прямые изображения, полученные на различных длинах волн, так и электромагнитные спектры принимаемого излучения.

Оптическая астрономия является старейшей областью астрофизики. На сегодняшний день основными инструментами являются телескопы с ПЗС-матрицами в качестве приёмников изображения. Так же часто производятся наблюдения с помощью спектрографов. Ограничение на наблюдения в оптическом диапазоне накладывает дрожание земной атмосферы, мешающее наблюдениям на больших телескопах. Для устранения этого эффекта и получения максимально чёткого изображения используются различные методы, такие как адаптивная оптика, спекл-интерферометрия, а также выведение телескопов в космическое пространство за пределы атмосферы. В этом диапазоне хорошо видны звёзды и планетарные туманности, что позволяет изучать в том числе их расположение и химическое строение.

Наблюдения также могут различаться по продолжительности. Большинство оптических наблюдений производятся с выдержками порядка минут или часов.

Теоритическая астрофизика:

Теоретическая астрофизика использует как аналитические методы так и численное моделирование для изучения различных астрофизических явлений, построения их моделей и теорий. Подобные модели, построенные из анализа наблюдательных данных, могут быть проверены с помощью сравнения теоретических предсказаний и вновь полученных данных. Также наблюдения могут помочь в выборе одной из нескольких альтернативных теорий.

Объектом исследований теоретической астрофизики являются, например:

    Физика межзвёздной среды

    Эволюция звёзд и их строение.

    Физика чёрных дыр

    Звёздная динамика

    Эволюция галактик

    Крупномасштабная структура Вселенной

    Магнитогидродинамика

    Космология

История астрофизики.

Исторически астрофизика выделилась в самостоятельное научное направление с появлением спектрального анализа (конец Х IX в.), который открыл возможность дистанционного исследования химического состава и физического состояния не только лабораторных, но и астрономических источников света.

Термин «астрофизика» появился в середине 60-х годов XIX века. «Крестным отцом» астрофизики был немецкий астроном Иоганн Карл Фридрих Целльнер (1834 – 1882), профессор Лейпцигского университета.

В отличие от небесной механики, год рождения, который точно известен (1687-й), назвать дату «появления на свет» астрофизики не так легко. Она зарождалась постепенно, в течение 1-ой половине XIX века.

Бурное развитие астрофизики за более чем столетний период ее существования было связано как с быстрым развитием различных направлений классической, квантовой и релятивистской физики. Очень важный, революционный скачек в астрофизических исследованиях произошел с началом изучения объектов за пределами оптического диапазона спектра, сначала в радио (конец 30-х годов ХХ в.), а затем, уже с помощью космической техники (60-80-е года ХХ в.). Параллельно с развитием методов практической астрофизики, благодаря прогрессу в физике и особенно созданию теории излучения и строения атома, развилась теоретическая астрофизика. Ее цель - интерпретация результатов наблюдений, постановка новых задач исследований, а также обоснование методов практической астрофизики.

Цель астрофизики.

Предметом астрофизики является исследование физических процессов во Вселенной. Задачей астрофизики является построение моделей, которые могут объяснить появление излучения различных космических объектов с наблюдаемым характеристиками: интенсивностью, спектром, поляризацией, временным профилем и т.д. Естественно, при решении этой задачи ученые-астрофизики исходят из известной картины физических процессов и законов, которые могут реализоваться или проявиться в тех или иных условиях, которые определяются, в основном, величиной температуры и плотности вещества, наличием магнитного поля и его величиной, возможным влиянием сил тяготения.

Современна астрофизика.

Современная астрофизика сформировалась после второй мировой войны. С точки зрения наблюдений, ее основная черта - расширение спектрального диапазона исследуемого излучения. Довоенная астрофизика использовала лишь результаты астрономических наблюдений в видимом свете - сравнительно узкой полосе спектра электромагнитных волн.

В настоящее время в астрономии используются практически все диапазоны, от радиоволн до гамма-излучения. Превращение астрономии во всеволновую обогатило знания об известных объектах и, что гораздо важнее, привело к открытию новых объектов, позволило зарегистрировать излучение из таких областей, где материя (то есть вещество и излучение) находятся в так называемых экстремальных (предельных) условиях. Этот термин обычно используется, чтобы подчеркнуть, что те или иные условия практически невозможно реализовать в лабораториях на Земле. В этих условиях материя нередко приобретает новые физические свойства. В качестве примеров экстремальных астрофизических условий можно указать высокие плотности вещества, реализующиеся на первых этапах развития Вселенной, в недрах нейтронных звезд и в ближайших окрестностях черных дыр; сильные гравитационные поля в окрестностях черных дыр; сильные магнитные поля белых карликов и нейтронных звезд. Именно в области исследования объектов, в которых реализуются те или иные экстремальные условия, по нашему мнению, сосредоточены основные проблемы современной астрофизики.

Необходимо подчеркнуть, что при нынешнем уровне развития земной техники макроскопические свойства материи в экстремальных условиях можно исследовать, только наблюдая астрофизические объекты, в которых эти условия реализуются. В этом смысле можно смело утверждать: современная астрофизика - это передний край науки, и она исследует наиболее фундаментальные явления и процессы, не доступные пока "земной" физике.

Начиная с 60-х гг. 20 в. при помощи аппаратуры, установленной на ИСЗ и AMC, были получены важные сведения о планетах Солнечной системы и их спутниках, в частности о физ. состоянии и хим. составе атмосфер и поверхностных слоев двух ближайших планет - Венеры и Марса, подробно исследован спутник Земли - Луна, существенно углублены представления о природе процессов, происходящих на поверхности и в недрах Солнца и др. звёзд, в межзвёздной среде и в мире галактик. Одна из важнейших проблем современной астрофизики - разработка теории гидромагнитного динамо с целью объяснения солнечного магнетизма, в т. ч. механизма генерации и усиления магнитного поля во внутренних слоях Солнца, механизмов формирования и поддерживания устойчивости солнечных пятен, колебания полярности с периодом в 22 года. В 60-х гг. на основе теории токовых слоев удалось сделать первые шаги в объяснении солнечных вспышек, динамики протуберанцев и солнечной короны в целом. Пока нельзя считать полностью решённой проблему солнечных нейтрино, а следовательно и внутреннего строения Солнца.

Располагающиеся на краях некоторых газовых туманностей источники мощного когерентного излучения в отдельных линиях молекул межзвёздного газа - космические мазеры - служат доказательством происходящих и в наше время процессов звездообразования в Галактике. С помощью быстродействующих ЭВМ удалось создать "сценарии" эволюции звёзд от начала сжатия фрагмента газопылевого облака (протозвезды) до её заключительной стадии - медленного сброса звездой оболочки (стадия планетарной туманности)и образования белого карлика или (при большой массе звезды) вспышки сверхновой с образованием нейтронной звезды (или чёрной дыры). Однако пока существует полная неясность относительно деталей процесса перемешивания вещества на конвективной стадии сжатия протозвезды, не исследована роль вращения и магнитных полей облака, окончательно не установлен верхний предел массы устойчивой нейтронной звезды. Не разработан в деталях механизм ускорения частиц в пульсарах. Пока нет объяснения активности ядер галактик, неясной остаётся природа квазаров. Требует уточнения вопрос о природе ядра нашей Галактики как двойной сверхмассивной системы (двойная чёрная дыра или чёрная дыра и компактное звёздное скопление), активно взаимодействующей с окружающими её звёздами.

В релятивистской астрофизике до конца не решены вопросы о барионной асимметрии Вселенной, о величине отношения числа ядер и электронов к числу фотонов, о роли нейтрино, а возможно, и других пока неизвестных частиц в образовании наблюдаемой структуры Вселенной, состояния вакуума и фазовых переходов в эволюции горячей Вселенной.

Так же проблемами современной астрофизики являются:

    детектирование «тёмной материи»

    проблема космических гамма-всплесков

    проблема поиска чёрных дыр и квазаров

    общая космологическая проблема.

Детектирование «Темной материи»

Тёмная материя в астрономии и космологии - форма материи, которая не испускает электромагнитного излучения и не взаимодействует с ним. Обнаружение природы тёмной материи поможет решить проблему скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.

Основная трудность при поиске частиц тёмной материи заключается в том, что все они электрически нейтральны. Имеются два варианта поиска:

  • косвенное

При прямом поиске изучаются следствия взаимодействия этих частиц с электронами или атомными ядрами с помощью наземной аппаратуры. Косвенные методы основаны на попытках обнаружения потоков вторичных частиц, которые возникают, например, благодаря аннигиляции солнечной или галактической тёмной материи.

Непосредственное изучение распределения тёмной материи в скоплениях галактик стало возможным после получения их высокодетализированных изображений в 1990-х годах. При этом изображения более удалённых галактик, проецирующихся на скопление, оказываются искажёнными или даже расщепляются из-за эффекта гравитационного линзирования. По характеру этих искажений становится возможным восстановить распределение и величину массы внутри скопления независимо от наблюдений галактик самого скопления. Таким образом, прямым методом подтверждается наличие скрытой массы и тёмной материи в галактических скоплениях.

Проблема космический гамма-всплесков

Космические гамма-всплески относятся к наиболее загадочным астрономическим явлениям, открытым в последние 25 лет, и до сих пор вызывают оживленный интерес ученых. Гамма-всплески были открыты случайно американскими спутниками серии Vela, предназначенными для обнаружения наземных ядерных взрывов. К настоящему времени различными космическими аппаратами зарегистрировано около 1500 всплесков. Они представляют собой импульсы гамма-излучения (энергии квантов от нескольких десятков килоэлектровольт до нескольких мегаэлектровольт) длительностью от десятков миллисекунд до нескольких минут.

Гамма-всплески наблюдаются довольно часто, в среднем один раз в 20 - 30 часов, однако невозможно заранее узнать, когда и в какой точке небосвода всплеск произойдет в следующий раз. Причиной проблемы гамма-всплесков является то, что распределение весьма изотропно, то есть не обнаружено концентрации источников к галактическому экватору, как для радиопульсаров или рентгеновских галактических источников. Не найдено концентрации ни к каким другим точкам или областям небесной сферы: к центру, антицентру или полюсам Галактики, к ближайшим галактикам Большому и Малому Магеллановым облакам, к туманности Андромеды (М31), ближайшим скоплениям галактик, сверхскоплениям и т.д. Непростая ситуация складывается с распределением всплесков по их яркости (или потоку рентгеновского излучения).

Общая космологическая проблема

Сегодня космология еще не в состоянии ответить на ряд принципиальных вопросов. Среди них основные: что было до начала наблюдаемого расширения? Будет ли Вселенная вечно расширяться или опять сожмется в точку? Но отсутствие ответов сейчас, не мешает физикам рассматривать самые ранние стадии расширения Вселенной. Некоторые теории оперируют с временами 10-35 секунды от начала. Есть теории, которые «заглядывают» в еще более ранние моменты времени. Тем более что скорости процессов, происходящих при «рождении» нашего Мира, в неизмеримое число раз превышают скорости любых известных сегодня взрывных процессов. Поэтому-то расширение Вселенной действительно можно уподобить «сверхвзрыву», Большому Взрыву.

Проблема возникновения нашего мира очень важна потому, что никакая космологическая модель, никакая теория невозможна без достаточно полного понимания начальных этапов развития Вселенной - ведь именно тогда закладывалось ее будущее, все последующие стадии ее формирования. И эти стадии нельзя понять, не зная, какой была ранняя, горячая Вселенная.

В какой-то мере проблема дальнейшей судьбы Вселенной проще, чем проблема начала. Здесь возможны только два варианта. Первый состоит в том, что Вселенная будет постоянно расширяться в течение неограниченного времени. Второй обрекает Вселенную на грандиозную катастрофу- сингулярность.

Выбор вариантов определяется значением средней плотности вещества во Вселенной. Эта цифра, несмотря на большое число наблюдательных данных, многочисленные теоретические оценки, известна не с очень высокой точностью. Если учесть только массу галактик, а затем усреднить ее по объему Вселенной, то получится значение средней плотности ρ = 3*10-31 г/см3. Но, кроме галактик, в космосе есть еще ионизированный газ, черные дыры, потухшие звезды и другие виды материи. Значение средней плотности галактик много меньше значений критической плотности, при котором фаза расширения обязательно должна смениться фазой сжатия.

Однако в астрофизике существует так называемая проблема скрытой массы - трудно наблюдаемых форм вещества в космосе. Эта масса может находиться как в скоплениях галактик, так и в пространстве между скоплениями. Оценки скрытой массы поднимают значение средней плотности вещества Вселенной почти до ее критического значения.

Список использованной литературы:

    http://www.pereplet.ru/obrazovanie/stsoros/571.html

    http://school.xvatit.com/index.php?title=Будущее_Вселенной

    http://www.spacephys.ru/proekty/astrofizika

    http://www.wikiznanie.ru/ru-wz/index.php/Астрофизика

    Засов А.В., Постнов К.А. Курс общей астрофизики (2-е изд.: Фрязино: Век 2, 2011)

    http://ru.wikipedia.org/wiki/Тёмная_материя

    http://biofile.ru/kosmos/2817.html

Loading...Loading...