Для чего используют число фибоначчи. Исследовательская работа "загадка чисел фибоначчи"

(числа Фибоначчи, англ. Fibonacci sequence, Fibonacci numbers) – ряд чисел, выведенный известным математиком Фибоначчи. Имеет следующий вид: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181 и др.

История ряда Фибоначчи

Леонардо из Пизы (Фибоначчи) пришел в математику из-за практической потребности в установлении деловых контактов. В молодости Фибоначчи много путешествовал, сопровождал отца в разных деловых поездках, что позволяло ему общаться с местными учеными.

Ряд чисел, который сегодня носит его имя, был выведен благодаря проблеме с кроликами, которую автор изложил в книге под названием «Liber abacci» (1202 год): один человек посадил в загон, со всех сторон окруженный стеной, пару кроликов. Вопрос: сколько пар кроликов может произвести эта пара за год, если известно, что ежемесячно, начиная со второго месяца, каждая пара производит на свет еще одну пару кроликов.

В итоге Фибоначчи определил, что число пар кроликов в каждый из последующих двенадцати месяцев будет соответственно:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Где каждое последующее число - это сумма двух предыдущих. Это ряд (числа) Фибоначчи. Данная последовательность имеет множество свойств, интересных с математической точки зрения. Например, если разделить линию на 2 сегмента таким образом, чтобы соотношение между меньшим и большим сегментом было пропорционально соотношению между большим сегментом и всей линией, получится коэффициент пропорциональности, известный как «золотое сечение». Он приблизительно равен 0,618. Ученые эпохи Возрождения считали, что именно эта пропорция, если ее соблюдать в архитектурных сооружениях, способна больше всего радовать глаз.

Применение ряда Фибоначчи

Ряд Фибоначчи нашел широкое применение в самых разных областях науки и жизни. Например, в природе: в строении ураганов, раковин и даже галактик. Не стал исключением и валютный рынок Форекс, где последовательный ряд чисел стал использоваться для прогнозирования трендов. Следует отметить, что между этими числами есть неизменные отношения. Например, как упоминалось выше, отношение предыдущего числа к следующему асимптотически стремится к 0,618 (золотое сечение). Отношения некоторого числа к предыдущему также стремится к величине 0,618.

Помимо прогнозирования трендов, числа Фибоначчи на Форекс используются для прогноза направления движения цены. Например, разворот тренда по золотому сечению происходит на уровне около 61,8% от предыдущего изменения цены (см. рис. 1). Соответственно, самым выгодным вариантом в таком случае будет закрытие позиции чуть ниже данного уровня. Опираясь на ряд Фибоначчи можно рассчитывать наиболее выгодные моменты закрытия и открытия сделок.

Также, одним из способов применения последовательных чисел ряда Фибоначчи на рынке Форекс является построение дуг. Выбор центра для такой дуги происходит в точке важного дна или потолка. Радиус дуг рассчитывается при помощи умножения коэффициентов Фибоначчи на значение предыдущего существенного подъема или спада цен.

Выбираемые коэффициенты имеют значения 0.333, 0.382, 0.4, 0.5, 0.6, 0.618, 0.666. Расположение дуг определяет их роль: поддержки или сопротивления. Чтобы получить представление также о времени возникновения движений цены, дуги, как правило, используют совместно со скоростными или веерными линиями.

Принцип их построения аналогичен: нужно выбрать точки прошлых экстремумов и построить горизонтальную линию из вершины первого из них и вертикальную – из вершины второго. Затем следует поделить получившийся вертикальный отрезок на соответствующие коэффициентам части, нарисовать лучи, идущие из первой точки сквозь только что избранные. При использовании отношений 2/3 и 1/3 получаются скоростные линии, при более строгих 0,618, 0,5 и 0,382 – веерные линии. Все они служат линиями поддержки или сопротивления для ценового тренда (см. рис. 2).

Пересечения веерных дуг и линий служат сигналами для определения поворотных точек тренда – как по времени, так и по цене.

(Рис. 2 – Ряд Фибоначчи, построение дуг)

Более волатильные пары валют характеризуются достижением больших уровней Фибоначчи по сравнению с менее волатильными. Максимальные движения фиксируются по парам Доллар/Франк и Фунт/Доллар, затем идут Доллар/Йена и Евро/Доллар.

Использование ряда Фибоначчи на валютном рынке Форекс имеет одну особенность – их можно применять лишь для хороших импульсных движений.

Каналиева Дана

В данной работе мы изучили и проанализировали проявление чисел последовательности Фибоначчи в окружающей нас действительности. Мы обнаружили удивительную математическую связь между числом спиралей у растений, числом веток в любой горизонтальной плоскости и числами последовательности Фибоначчи. Также мы увидели строгую математику в строении человека. Молекула ДНК человека, в которой зашифрована вся программа развития человеческого существа, дыхательная система, строение уха - всё подчиняется определённым числовым соотношениям.

Мы убедились, что у Природы есть свои законы, выраженные с помощью математики.

И математика очень важный инструмент познания тайн Природы.

Скачать:

Предварительный просмотр:

МБОУ «Первомайская средняя общеобразовательная школа»

Оренбургского района Оренбургской области

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

«Загадка чисел

Фибоначчи»

Выполнила: Каналиева Дана

ученица 6 класса

Научный руководитель:

Газизова Валерия Валерьевна

Учитель математики высшей категории

п. Экспериментальный

2012г

Пояснительная записка……………………………………………………………………........ 3.

Введение. История чисел Фибоначчи.……………………………………………………...... 4.

Глава 1. Числа Фибоначчи в живой природе.......……. …………………………………... 5.

Глава 2. Спираль Фибоначчи.......................................................……………..... 9.

Глава 3. Числа Фибоначчи в изобретениях человека.........…………………………….. 13

Глава 4. Наши исследования……………………………………………………………….... 16.

Глава 5. Заключение, выводы……………………………………………………………...... 19.

Список используемой литературы и сайтов Интернета…………………………………........21.

Объект исследования:

Человек, математические абстракции, созданные человеком, изобретения человека, окружающий растительный и животный мир.

Предмет исследования:

форма и строение исследуемых предметов и явлений.

Цель исследования:

изучить проявление чисел Фибоначчи и связанного с ним закона золотого сечения в строении живых и неживых объектов,

найти примеры использования чисел Фибоначчи.

Задачи работы:

Описать способ построения ряда Фибоначчи и спирали Фибоначчи.

Увидеть математические закономерности, в строении человека, растительного мира и неживой природы с точки зрения феномена Золотого сечения.

Новизна исследования:

Открытие чисел Фибоначчи в окружающей нас действительности.

Практическая значимость:

Использование приобретенных знаний и навыков исследовательской работы при изучении других школьных предметов.

Умения и навыки:

Организация и проведение эксперимента.

Использование специальной литературы.

Приобретение умения делать обзор собранного материала (доклад, презентацию)

Оформление работы рисунками, диаграммами, фотографиями.

Активное участие в обсуждении своей работы.

Методы исследования:

эмпирический (наблюдение, эксперимент, измерение).

теоретический (логическая ступень познания).

Пояснительная записка.

«Числа управляют миром! Число - это сила, царящая над богами и смертными!» - так говорили ещё древние пифагорейцы. Актуальна ли в наши дни эта основа учения Пифагора? Изучая в школе науку чисел, нам хочется убедиться в том, что действительно, явления всей Вселенной подчинены определенным числовым соотношениям, найти эту невидимую связь между математикой и жизнью!

Неужели в каждом цветочке,

И в молекуле, и в галактике,

Числовые закономерности

Этой строгой «сухой» математики?

Мы обратились к современному источнику информации - к Интернету и прочитали о числах Фибоначчи, о магических числах, которые таят в себе великую загадку. Оказывается, эти числа можно найти в подсолнухах и сосновых шишках, в крыльях стрекозы и морских звёздах, в ритмах человеческого сердца и в музыкальных ритмах...

Почему же эта последовательность чисел столь распространена в нашем мире?

Мы захотели узнать о тайнах чисел Фибоначчи. Результатом нашей деятельности и явилась данная исследовательская работа.

Гипотеза:

в окружающей нас действительности всё построено по удивительно гармоничным законам с математической точностью.

Всё в мире продуманно и просчитано самым главным нашим дизайнером - Природой!

Введение. История ряда Фибоначчи.

Удивительные числа были открыты итальянским математиком средневековья Леонардо Пизанским, более известным под именем Фибоначчи. Путешествуя по Востоку, он познакомился с достижениями арабской математики, способствовал передаче их на Запад. В одном из своих трудов под названием «Книга вычислений» он представил Европе одно из величайших открытий всех времён и народов - десятичную систему счисления.

Однажды, он ломал голову над решением одной математической задачи. Он пытался создать формулу, описывающую последовательность размножения кроликов.

Разгадкой стал числовой ряд, каждое последующее число которого, является суммой двух предыдущих:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ...

Числа, образующие данную последовательность называются "числами Фибоначчи", а сама последовательность - последовательностью Фибоначчи.

«Ну и что?» - скажете вы, - «Мали ли мы сами можем придумать подобных числовых рядов, нарастающих по заданной прогрессии?» Действительно, когда появился ряд Фибоначчи, никто, в том числе и он сам, не подозревал, насколько близко ему удалось приблизиться к разгадке одной из величайших тайн мироздания!

Фибоначчи вёл отшельнический образ жизни, много времени проводил на природе, и, гуляя в лесу, он обратил внимание, что эти числа стали буквально преследовать его. Повсюду в природе он снова и снова встречал эти числа. Например, лепестки и листья растений строго укладывались в данный числовой ряд.

В числах Фибоначчи существует интересная особенность: частное от деления последующего числа Фибоначчи на предыдущее, по мере роста самих чисел, стремиться к 1,618. Именно это постоянное число деления в средние века было названо Божественной пропорцией, а ныне именуется как золотое сечение или золотая пропорция.

В алгебpе это число обозначается гpеческой буквой фи (Ф)

Итак, φ = 1,618

233 / 144 = 1,618

377 / 233 = 1,618

610 / 377 = 1,618

987 / 610 = 1,618

1597 / 987 = 1,618

2584 / 1597 = 1,618

Сколько бы раз мы не делили одно на другое, соседнее с ним число, мы всегда получим 1, 618. А если сделаем наоборот, то есть разделим меньшее число на большее, то получим 0, 618, это число, обратное к 1, 618, тоже называется золотой пропорцией.

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду, как арифметическому выражению закона золотого деления.

Учёные, анализируя дальнейшее применение этого числового ряда к природным феноменам и процессам, обнаружили, что эти числа содержатся буквально во всех объектах живой природы, в растениях, в животных и в человеке.

Удивительная математическая игрушка оказалась уникальным кодом, заложенным во все природные объекты самим Творцом Вселенной.

Рассмотрим примеры, где встречаются числа Фибоначчи в живой и неживой природе.

Числа Фибоначчи в живой природе.

Если посмотреть на растения и деревья вокруг нас, то видно, сколь много листьев на каждом из них. Издалека кажется, что ветки и листья на растениях расположены случайным образом, в произвольном порядке. Однако во всех растениях чудесным образом, математически точно спланировано какая веточка откуда будет произрастать, как ветки и листья будут располагаться около стебля или ствола. С первого дня появления растение в точности следует в своём развитии этим законам, то есть ни один лист, ни один цветок не появляется случайно. Ещё до появления растение уже точно запрограммировано. Сколько будет веток на будущем дереве, где вырастут ветки, сколько будет листьев на каждой ветке, и как, в каком порядке будут располагаться листья. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), в числе оборотов на стебле, в числе листьев в цикле проявляет себя ряд Фибоначчи, а стало быть, проявляет себя и закон золотого сечения .

Если вы зададитесь целью отыскать числовые закономерности в живой природе, то заметите, что эти числа часто встречаются в различных спиральных формах, которыми так богат мир растений. Например, черенки листьев примыкают к стеблю по спирали, которая проходит между двумя соседними листьями: полного оборота - у орешника, - у дуба, - у тополя и груши, - у ивы.

Семена подсолнечника, эхинацеи пурпурной и многих других растений, расположены спиралями, причем количества спиралей каждого направления - числа Фибоначчи.

Подсолнечник, 21 и 34 спирали. Эхинацея, 34 и 55 спиралей.

Чёткая, симметричная форма цветов также подчинена строгому закону .

У многих цветов количество лепесточков - именно числа из ряда Фибоначчи. Например:

ирис, 3леп. лютик, 5 леп. златоцвет, 8 леп. дельфиниум,

13 леп.

цикорий,21леп. астра, 34 леп. маргаритки,55леп.

Ряд Фибоначчи характеризует структурную организацию многих живых систем.

Мы уже говорили, что отношений соседних чисел в ряду Фибоначчи есть число φ = 1,618. Оказывается, что и сам человек - просто кладезь числа фи.

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными. Принцип расчета золотой меры на теле человека можно изобразить в виде схемы.

M/m=1,618

Первый пример золотого сечения в строении тела человека:

Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618.

Рука человека

Достаточно лишь приблизить сейчас вашу ладонь к себе и внимательно посмотреть на указательный палец, и вы сразу же найдете в нем формулу золотого сечения. Каждый палец нашей руки состоит из трех фаланг.
Сумма двух первых фаланг пальца в соотношении со всей длиной пальца и дает число золотого сечения (за исключением большого пальца).

Кроме того, соотношение между средним пальцем и мизинцем также равно числу золотого сечения.

У человека 2 руки, пальцы на каждой руке состоят из 3 фаланг (за исключением большого пальца). На каждой руке имеется по 5 пальцев, то есть всего 10, но за исключением двух двухфаланговых больших пальцев только 8 пальцев создано по принципу золотого сечения. Тогда как все эти цифры 2, 3, 5 и 8 есть числа последовательности Фибоначчи.


Золотая пропорция в строении легких человека

Американский физик Б.Д.Уэст и доктор А.Л. Гольдбергер во время физико-анатомических исследований установили, что в строении легких человека также существует золотое сечение.

Особенность бронхов, составляющих легкие человека, заключена в их асимметричности. Бронхи состоят из двух основных дыхательных путей, один из которых (левый) длиннее, а другой (правый) короче.

Было установлено, что эта асимметричность продолжается и в ответвлениях бронхов, во всех более мелких дыхательных путях. Причем соотношение длины коротких и длинных бронхов также составляет золотое сечение и равно 1:1,618.


Художники, ученые, модельеры, дизайнеры делают свои расчеты, чертежи или наброски, исходя из соотношения золотого сечения. Они используют мерки с тела человека, сотворенного также по принципу золотой сечения. Леонардо Да Винчи и Ле Корбюзье перед тем как создавать свои шедевры брали параметры человеческого тела, созданного по закону Золотой пропорции.
Есть и другое, более прозаическое применение пропорций тела человека. Например, используя эти соотношения, криминальные аналитики и археологи по фрагментам частей человеческого тела восстанавливают облик целого.

Золотые пропорции в строении молекулы ДНК.

Все сведения о физиологических особенностях живых существ, будь то растение, животное или человек, хранятся в микроскопической молекуле ДНК, строение которой также содержит в себе закон золотой пропорции. Молекула ДНК состоит из двух вертикально переплетенных между собой спиралей. Длина каждой из этих спиралей составляет 34 ангстрема, ширина 21 ангстрема. (1 ангстрем - одна стомиллионная доля сантиметра).

Так вот 21 и 34 - это цифры, следующие друг за другом в последовательности чисел Фибоначчи, то есть соотношение длины и ширины логарифмической спирали молекулы ДНК несет в себе формулу золотого сечения 1:1,618.

Не только прямоходящие, но и все плавающие, ползающие, летающие и прыгающие не избежали участи подчиняться числу фи. Сердечная мышца человека сокращается до 0, 618 своего объёма. Строение ракушки улитки соответствует пропорциям Фибоначчи. И таких примеров можно найти предостаточно - было бы желание исследовать природные объекты и процессы. Мир настолько пронизан числами Фибоначчи, что порой кажется: только ими Вселенная и может быть объяснена.

Спираль Фибоначчи.


В математике нет иной формы, которая обладала бы такими же уникальными свойствами, как спираль, потому, что
в основе строения спирали лежит правило Золотого сечения!

Чтобы понять математическое построение спирали, повторим, что такое Золотое сечение.

Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей, или, другими словами, меньший отрезок так относится к большему, как больший ко всему.

То есть (a+b) /a = a / b

Прямоугольник с именно таким отношением сторон стали называть золотым прямоугольником. Его длинные стороны соотносятся с короткими сторонами в соотношении 1,168: 1.
Золотой прямоугольник обладает многими необычными свойствами. Отрезав от золотого прямоугольника квадрат, сторона которого равна меньшей стороне прямоугольника,

мы снова получим золотой прямоугольник меньших размеров.

Этот процесс можно продолжать до бесконечности. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие золотые прямоугольники. Причем располагаться они будут по логарифмической спирали, имеющей важное значение в математических моделях природных объектов.

Например, спиралевидную форму можно увидеть и в расположении семян подсолнечника, в ананасах, кактусах, строении лепестков роз и так далее.

Нас удивляет и восхищает спиральное строение ракушек.


У большинства улиток, которые обладают раковинами, раковина растет в форме спирали. Однако нет сомнения, что эти неразумные существа не имеют представления не только о спирали, но не обладают даже простейшими математическими знаниями, чтобы самим создать себе спиралевидную раковину.
Но тогда как же эти неразумные существа смогли определить и избрать для себя идеальную форму роста и существования в виде спиральной раковины? Могли ли эти живые существа, которых ученых мир называет примитивными формами жизни, рассчитать, что идеальной для их существования будет спиральная форма ракушки?

Пытаться объяснить происхождение подобной даже самой примитивной формы жизни случайным стечением неких природных обстоятельств по меньшей мере абсурдно. Совершенно ясно, что этот проект является осознанным творением.

Спирали есть и в человеке. С помощью спиралей мы слышим:

Также, во внутреннем ухе человека имеется орган Cochlea ("Улитка"), который исполняет функцию передачи звуковой вибрации. Эта костевидная структура наполнена жидкостью и сотворена в форме улитки, имеющей в себе золотые пропорции.

Спирали есть на наших ладошках и пальцах:

В животном мире мы также можем найти множество примеров спиралей.

В форме спирали развиваются рога и бивни животных, когти львов и клювы попугаев являют собой логарифмические формы и напоминают форму оси, склонной обратиться в спираль.

Интересно, что спиралью закручивается ураган, облака циклона и это хорошо видно из космоса:

В океанских и морских волнах спираль можно математически отразить на графике с точками 1,1,2,3,5,8,13,21,34 и 55.

Такую «бытовую» и «прозаическую» спираль тоже все узнают.

Ведь вода убегает из ванной по спирали:

Да и живём мы с вами в спирали, ведь галактика - это спираль, соответствующая формуле Золотого сечения!

Итак, мы выяснили, что если взять Золотой прямоугольник и разбить его на более мелкие прямоугольники в точной последовательности Фибоначчи, а потом каждый из них разделить в таких пропорциях еще и еще, то получится система, которая называется спираль Фибоначчи.

Эту спираль мы обнаружили в самых неожиданных предметах и явлениях. Теперь понятно, почему спираль называют ещё «кривой жизни».
Спираль стала символом эволюции, ведь и развивается всё именно по спирали.

Числа Фибоначчи в изобретениях человека.

Подсмотрев у природы закон, выраженный последовательностью чисел Фибоначчи, учёные и люди искусства стараются подражать ему, воплощать этот закон в своих творениях.

Пропорция фи позволяет создавать шедевры живописи, грамотно вписывать в пространство архитектурные сооружения.

Не только деятели науки, но и архитекторы, дизайнеры и художники поражаются этой безупречной спирали у ракушки наутилуса,

занимающей наименьшее пространство и обеспечивающей наименьшую потерю тепла. Американские и тайские архитекторы, вдохновленные примером «наутилуса с камерами» в вопросе размещения максимума в минимуме пространства, заняты разработкой соответствующих проектов.

С незапамятных времен пропорция Золотого сечения считается наивысшей пропорцией совершенства, гармонии и даже божественности. Золотое отношение можно обнаружить и в скульптурах, и даже в музыке. Примером являются музыкальные произведения Моцарта. Даже биржевые курсы и алфавит иврита содержат золотое отношение.

Но мы хотим остановиться на уникальном примере создания эффективной солнечной установки. Американский школьник из Нью-Йорка Эйдан Дуайер свёл воедино свои знания о деревьях и обнаружил, что эффективность солнечных электростанций можно повысить, если привлечь математику. Будучи на зимней прогулке, Дуайер задумался, зачем деревьям такой «рисунок» веток и листьев. Он знал, что ветки на деревьях располагаются согласно последовательности Фибоначчи, а листья осуществляют фотосинтез.

В какой-то момент сообразительный мальчуган решил проверить, не помогает ли такое положение ветвей собирать больше солнечного света. Эйдан построил на своём заднем дворе опытную установку с маленькими солнечными батареями вместо листьев и проверил её в действии. Оказалось, что в сравнении с обычной плоской солнечной панелью его «дерево» собирает на 20% больше энергии и на 2,5 часа дольше эффективно работает.

Модель солнечного дерева Дуайера и графики, построенные школьником.

"А ещё такая установка занимает меньше места, чем плоская панель, собирает на 50% больше солнца зимой даже там, где она не смотрит на юг, да и снег в том количестве она не накапливает. Кроме того, дизайн в виде дерева гораздо больше подходит для городского пейзажа", — отмечает юный изобретатель.

Эйдана признали одним из лучших молодых естествоиспытателей 2011 года. Конкурс «2011 Young Naturalist» проводил музей естествознания Нью-Йорка. Эйдан подал предварительную заявку на патент своего изобретения .

Ученые продолжают активно развивать теорию чисел Фибоначчи и золотого сечения.

Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта.

Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения.

В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Итак, мы видим, что сфера применения последовательности чисел Фибоначчи очень многогранна:

Наблюдая за явлениями, происходящими в природе, учёные сделали поразительные выводы о том, что вся последовательность событий, происходящих в жизни, революции, крушения, банкротства, периоды процветания, законы и волны развития на фондовом и валютных рынках, циклы семейной жизни, и так далее, организуются на временной шкале в виде циклов, волн. Эти циклы и волны тоже распределяются в соответствии с числовым рядом Фибоначчи!

Опираясь на эти знания, человек научится в будущем прогнозировать различные события и управлять ими.

4. Наши исследования.

Мы продолжили наши наблюдения, и изучили строение

Сосновой шишки

тысячелистника

комара

человека

И убедились, что в этих, таких разных на первый взгляд объектах, незримо присутствуют те самые числа последовательности Фибоначчи.

Итак, шаг 1.

Возьмём сосновую шишку:

Рассмотрим её поближе:

Замечаем две серии спиралей Фибоначчи: одна - по часовой стрелки, другая - против, их число 8 и 13.

Шаг 2.

Возьмём тысячелистник:

Внимательно рассмотрим строение стеблей и цветов:

Заметим, что каждая новая ветвь тысячелистника растет из пазухи, и от новой ветви растут новые ветви. Складывая старые и новые ветви, мы нашли число Фибоначчи в каждой горизонтальной плоскости.

Шаг 3.

А проявляются ли числа Фибоначчи в морфологии различных организмов? Рассмотрим всем известного комара:

Видим: 3 пары ног, голове 5 усиков - антенн, брюшко делится на 8 сегментов.

Вывод:

В наших исследованиях мы увидели, что в окружающих нас растениях, живых организмах и даже в строении человека проявляют себя числа из последовательности Фибоначчи, что отражает гармоничность их строения.

Сосновая шишка, тысячелистник, комар, человек устроены с математической точностью.

Мы искали ответ на вопрос: как проявляет себя ряд Фибоначчи в окружающей нас действительности? Но, отвечая на него, получали новые и новые вопросы.

Откуда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Спираль скручивается или раскручивается?

Как удивительно человек познаёт этот мир!!!

Найдя ответ на один вопрос, получает следующий. Разгадает его, получает два новых. Разберётся с ними, появятся ещё три. Решив и их, обзаведётся пятью нерешёнными. Потом восьмью, потом тринадцатью, 21, 34, 55...

Узнаёте?

Заключение.

Самим творцом во все объекты

Заложен уникальный код,

И тот, кто дружен с математикой,

Его познает и поймёт!

Мы изучили и проанализировали проявление чисел последовательности Фибоначчи в окружающей нас действительности. Также мы узнали, что закономерности этого числового ряда, в том числе и закономерности «Золотой» симметрии, проявляются в энергетических переходах элементарных частиц, в планетарных и космических системах, в генных структурах живых организмов.

Мы обнаружили удивительную математическую связь между числом спиралей у растений, числом веток в любой горизонтальной плоскости и числами в последовательности Фибоначчи. Мы увидели, как морфология различных организмов тоже подчиняется этому таинственному закону. Также мы увидели строгую математику в строении человека. Молекула ДНК человека, в которой зашифрована вся программа развития человеческого существа, дыхательная система, строение уха, - всё подчиняется определённым числовым соотношениям.

Мы узнали, что сосновые шишки, раковины улиток, волны океана, рога животных, облака циклона и галактики - все они образуют логарифмические спирали. Даже человеческий палец, который составлен из трех фаланг, находящихся по отношению друг к другу в Золотой пропорции, принимает спиральную форму, когда сжимается.

Вечность времени и световые годы космоса разделяют сосновую шишку и спиральную галактику, но строение остаётся тем же самым: коэффициент 1,618 ! Возможно, это первостепенный закон, управляющий природными явлениями.

Таким образом, наша гипотеза о существовании особых числовых закономерностей, которые отвечают за гармонию, подтверждается.

Действительно, всё в мире продуманно и просчитано самым главным нашим дизайнером - Природой!

Мы убедились, что у Природы есть свои законы, выраженные с помощью математики. И математика - это очень важный инструмент

для познания тайн природы.

Список литературы и сайтов Интернета:

1. Воробьев Н. Н. Числа Фибоначчи. - М., Наука, 1984.
2. Гика М. Эстетика пропорций в природе и искусстве. - М., 1936.

3. Дмитриев А. Хаос, фракталы и информация. // Наука и жизнь, № 5, 2001.
4. Кашницкий С. Е. Гармония, сотканная из парадоксов // Культура и

Жизнь. - 1982.- № 10.
5. Малай Г. Гармония - тождество парадоксов // МН. - 1982.- № 19.
6. Соколов А. Тайны золотого сечения // Техника молодежи. - 1978.- № 5.
7. Стахов А. П. Коды золотой пропорции. - М., 1984.
8. Урманцев Ю. А. Симметрия природы и природа симметрии. - М., 1974.
9. Урманцев Ю. А. Золотое сечение // Природа. - 1968.- № 11.

10. Шевелев И.Ш., Марутаев М.А., Шмелев И.П. Золотое сечение/Три

Взгляда на природу гармонии.-М., 1990.

11.Шубников А. В., Копцик В. А. Симметрия в науке и искусстве. -М.:

Числа Фибоначчи - элементы числовой последовательности.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени средневекового математика Леонардо Пизанского (или Фибоначчи), который жил и работал торговцем и математиком в итальянском городе Пизе. Он один из самых прославленных европейских ученых своего времени. Среди его величайших достижений - введение арабских цифр, заменивших римские. Fn =Fn-1 +Fn-2

Математический ряд асимптотически (то есть приближаясь все медленнее и медленнее) стремится к постоянному отношению. Однако это отношение иррационально; оно имеет бесконечную, непредсказуемую последовательность десятичных значений, выстраивающихся после него. Оно никогда не может быть выражено точно. Если каждое число, являющееся частью ряда, разделить на предшествующее значение (например, 13-^8 или 21 -ИЗ), результат действия выразится в отношении, которое колеблется вокруг иррационального числа 1,61803398875, чуть больше или чуть меньше соседних отношений ряда. Отношение никогда, до бесконечности, не будет точным до последней цифры (даже при использовании самых мощных компьютеров, созданных в наше время). Ради краткости, будем использовать в качестве отношения Фибоначчи число 1,618 и просим читателей не забывать об этой погрешности.

Числа Фибоначчи имеют важное значение и во время выполнения анализа Алгоритм Евклида для определения наибольшего общего делителя двух чисел. Числа Фибоначчи происходят в формулу о диагонали треугольником Паскаля (биномиальных коэффициентов).

Числа Фибоначчи оказались связанными с « золотым сечением».

О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Что же такое « золотое сечение»? Ответ неизвестен до сих пор. Числа Фибоначчи действительно актуальны для теории практики в наше время. Подъем значимости произошел в 20 веке и продолжается до сих пор. Использование чисел Фибоначчи в экономике и информатике и привлекло массы людей к их изучению.

Методика моего исследования заключалась в изучении специализированной литературы и обобщении полученной информации, а так же проведении собственных исследований и выявлений свойств чисел и сферы их использования.

В ходе научных исследования определила само понятия чисел Фибоначчи, их свойства. Так же я выяснила интересные закономерности в живой природе, непосредственно в строении семян подсолнуха.

На подсолнухе семечки выстраиваются в спирали, причем количества спиралей, идущих в другую сторону, различны - они являются последовательными числами Фибоначчи.

На этом подсолнухе 34 и 55.

То же наблюдается и на плодах ананаса, где спиралей бывает 8 и 14. С уникальным свойством чисел Фибоначчи связаны листьев кукурузы.

Дроби вида a/b, соответствующие винтообразному расположению листьев ног стебелька растения, часто являются отношениями последовательных чисел Фибоначчи. Для орешника это отношение равно 2/3, для дуба-3/5, для тополя 5/8, для ивы 8/13 и т. д.

Рассматривая расположения листьев на стебле растений можно заметить, что между каждыми парами листьев (А и С) третья расположено в месте золотого сечения(В)

Ещё интересное свойство числа Фибоначчи является, что произведение и частное двух любых различных чисел Фибоначчи, отличных от единицы, никогда не является числом Фибоначчи.

В результате исследования я пришла к следующим выводам: числа Фибоначчи - уникальная арифметическая прогрессия, появившаяся в 13 веке нашей эры. Данное прогрессия не теряет своей актуальности, что и подтвердилось в ходе моих исследований. Число Фибоначчи встречаются не то и в программировании и экономических прогнозах, в живописи, архитектуре и музыке. Картины таких известных художников, как Леонардо да Винчи, Микеланджело, Рафаэля и Боттичелли скрывают в себе магию золотого сечения. Даже И. И. Шишкин использовал золотое сечение в своей картине «Сосновая роща».

В это сложно поверить, но золотое сечение встречается и в музыкальных произведениях таких великих композиторов, как Моцарт, Бетховен, Шопен и т. д.

Числа Фибоначчи встречается и в архитектуре. Например, золотое сечение использовалось при строительстве Парфенона и собора Парижской Богоматери

Я обнаружила, что Числа Фибоначчи используются и в наших краях. Например, наличники домов, фронтоны.

Последовательность Фибоначчи определяется следующим образом:

Несколько первых её членов:

История

Эти числа ввёл в 1202 г. Леонардо Фибоначчи (Leonardo Fibonacci) (также известный как Леонардо Пизанский (Leonardo Pisano)). Однако именно благодаря математику 19 века Люка (Lucas) название "числа Фибоначчи" стало общеупотребительным.

Впрочем, индийские математики упоминали числа этой последовательности ещё раньше: Гопала (Gopala) до 1135 г., Хемачандра (Hemachandra) — в 1150 г.

Числа Фибоначчи в природе

Сам Фибоначчи упоминал эти числа в связи с такой задачей: "Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?". Решением этой задачи и будут числа последовательности, называемой теперь в его честь. Впрочем, описанная Фибоначчи ситуация — больше игра разума, чем реальная природа.

Индийские математики Гопала и Хемачандра упоминали числа этой последовательности в связи с количеством ритмических рисунков, образующихся в результате чередования долгих и кратких слогов в стихах или сильных и слабых долей в музыке. Число таких рисунков, имеющих в целом долей, равно .

Числа Фибоначчи появляются и в работе Кеплера 1611 года, который размышлял о числах, встречающихся в природе (работа "О шестиугольных снежинках").

Интересен пример растения — тысячелистника, у которого число стеблей (а значит и цветков) всегда есть число Фибоначчи. Причина этого проста: будучи изначально с единственным стеблем, этот стебель затем делится на два, затем от главного стебля ответвляется ещё один, затем первые два стебля снова разветвляются, затем все стебли, кроме двух последних, разветвляются, и так далее. Таким образом, каждый стебель после своего появления "пропускает" одно разветвление, а затем начинает делиться на каждом уровне разветвлений, что и даёт в результате числа Фибоначчи.

Вообще говоря, у многих цветов (например, лилий) число лепестков является тем или иным числом Фибоначчи.

Также в ботанике известно явление ""филлотаксиса"". В качестве примера можно привести расположение семечек подсолнуха: если посмотреть сверху на их расположение, то можно увидеть одновременно две серии спиралей (как бы наложенных друг на друга): одни закручены по часовой стрелке, другие — против. Оказывается, что число этих спиралей примерно совпадает с двумя последовательными числами Фибоначчи: 34 и 55 или 89 и 144. Аналогичные факты верны и для некоторых других цветов, а также для сосновых шишек, брокколи, ананасов, и т.д.

Для многих растений (по некоторым данным, для 90% из них) верен и такой интересный факт. Рассмотрим какой-нибудь лист, и будем спускаться от него вниз до тех пор, пока не достигнем листа, расположенного на стебле точно так же (т.е. направленного точно в ту же сторону). Попутно будем считать все листья, попадавшиеся нам (т.е. расположенные по высоте между стартовым листом и конечным), но расположенными по-другому. Нумеруя их, мы будем постепенно совершать витки вокруг стебля (поскольку листья расположены на стебле по спирали). В зависимости от того, совершать витки по часовой стрелке или против, будет получаться разное число витков. Но оказывается, что число витков, совершённых нами по часовой стрелке, число витков, совершённых против часовой стрелки, и число встреченных листьев образуют 3 последовательных числа Фибоначчи.

Впрочем, следует отметить, что есть и растения, для которых приведённые выше подсчёты дадут числа из совсем других последовательностей, поэтому нельзя сказать, что явление филлотаксиса является законом, — это скорее занимательная тенденция.

Свойства

Числа Фибоначчи обладают множеством интересных математических свойств.

Вот лишь некоторые из них:

Фибоначчиева система счисления

Теорема Цекендорфа утверждает, что любое натуральное число можно представить единственным образом в виде суммы чисел Фибоначчи:

где , , , (т.е. в записи нельзя использовать два соседних числа Фибоначчи).

Отсюда следует, что любое число можно однозначно записать в фибоначчиевой системе счисления , например:

причём ни в каком числе не могут идти две единицы подряд.

Нетрудно получить и правило прибавления единицы к числу в фибоначчиевой системе счисления: если младшая цифра равна 0, то её заменяем на 1, а если равна 1 (т.е. в конце стоит 01), то 01 заменяем на 10. Затем "исправляем" запись, последовательно исправляя везде 011 на 100. В результате за линейное время будет получена запись нового числа.

Перевод числа в фибоначчиеву систему счисления осуществляется простым "жадным" алгоритмом: просто перебираем числа Фибоначчи от больших к меньшим и, если некоторое , то входит в запись числа , и мы отнимаем от и продолжаем поиск.

Формула для n-го числа Фибоначчи

Формула через радикалы

Существует замечательная формула, называемая по имени французского математика Бине (Binet), хотя она была известна до него Муавру (Moivre):

Эту формулу легко доказать по индукции, однако вывести её можно с помощью понятия образующих функций или с помощью решения функционального уравнения.

Сразу можно заметить, что второе слагаемое всегда по модулю меньше 1, и более того, очень быстро убывает (экспоненциально). Отсюда следует, что значение первого слагаемого даёт "почти" значение . Это можно записать в строгом виде:

где квадратные скобки обозначают округление до ближайшего целого.

Впрочем, для практического применения в вычислениях эти формулы мало подходят, потому что требуют очень высокой точности работы с дробными числами.

Матричная формула для чисел Фибоначчи

Нетрудно доказать матричное следующее равенство:

Но тогда, обозначая

получаем:

Таким образом, для нахождения -го числа Фибоначчи надо возвести матрицу в степень .

Вспоминая, что возведение матрицы в -ую степень можно осуществить за (см.

еонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Будучи рожденным в Пизе в богатой купеческой семье, он пришел в математику благодаря сугубо практической потребности установить деловые контакты. В молодости Леонардо много путешествовал, сопровождая отца в деловых поездках. Например, мы знаем о его длительном пребывании в Византии и на Сицилии. Во время таких поездок он много общался с местными учеными.

Числовой ряд, носящий сегодня его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге «Liber abacci», написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?

Можете убедиться, что число пар в каждый из двенадцати последующих месяцев месяцев будет соответственно

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Иными словами, число пар кроликов создает ряд, каждый член в котором - сумма двух предыдущих. Он известен как ряд Фибоначчи , а сами числа - числа Фибоначчи . Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на два сегмента, так что соотношение между большим и меньшим сегментом будет пропорционально соотношению между всей линией и большим сегментом. Этот коэффицент пропорциональности, приблизительно равный 1,618, известен как золотое сечение . В эпоху Возрождения считалось, что именно эта пропорция, соблюденная в архитектурных сооружениях, больше всего радует глаз. Если вы возьмете последовательные пары из ряда Фибоначчи и будете делить большее число из каждой пары на меньшее, ваш результат будет постепенно приближаться к золотому сечению.

С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них - филлотаксис (листорасположение) - правило, по которому располагаются, например, семечки в соцветии подсолнуха. Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против. И каково же число семян в каждом случае? 34 и 55.

Последовательность Фибоначчи. Если смотреть на листья растения сверху, можно заметить, что они распускаются по спирали. Углы между соседними листьями образуют правильный математический ряд, известный под названием последовательности Фибоначчи. Благодаря этому каждый отдельно взятый лист, растущий на дереве, получает максимально доступное количество тепла и света.

Пирамиды в Мексике

Hе только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения, то же самое явление обнаpужено и у мексиканских пиpамид. Возникает мысль, что как египетские, так и мексиканские пиpамиды были возведены пpиблизительно в одно вpемя людьми общего пpоисхождения.
Hа попеpечном сечении пиpамиды видна фоpма, подобная лестнице.В пеpвом яpусе 16 ступеней, во втоpом 42 ступени и в тpетьем - 68 ступеней.
Эти числа основаны на соотношении Фибоначчи следующим обpазом:
16 x 1.618 = 26
16 + 26 = 42
26 x 1.618 = 42
42 + 26 = 68

После нескольких первых чисел последовательности отношение любого ее члена к последующему приблизительно равно 0,618, а к предшествующему – 1,618. Чем больше порядковый номер члена последовательности, тем ближе отношение к числу фи, являющемуся иррациональным числом и равному 0,618034… Отношение между членами последовательности, разделенными одним числом, примерно равно 0,382, а обратное ему число равно 2,618. На рис. 3-2 приведена таблица соотношений всех чисел Фибоначчи от 1 до 144.

Ф является единственным числом, которое, будучи прибавленным к 1, дает обратное себе число: 1 + 0,618 = 1: 0,618. Это родство процедур сложения и умножения приводит к следующей последовательности уравнений:

Если мы продолжим этот процесс, мы создадим прямоугольники размером 13 на 21, 21 на 34 и так далее.

Теперь проверьте это. Если вы разделите 13 на 8, вы получите 1,625. И если вы разделите большее число на меньшее число, то эти коэффициенты становятся всё ближе и ближе к числу 1.618, известному многим людям как Золотое сечение, числу, которое очаровывало математиков, учёных и художников на протяжении многих веков.

Таблица коэффициентов Фибоначчи

По мере роста новой прогрессии числа образуют третью последовательность, составленную из чисел, прибавленных к произведению четверки и числа Фибоначчи. Это делается возможным в связи с тем. что отношение между членами последовательности, отстоящими друг от друга на две позиции, равно 4.236. где число 0,236 является обратным к 4,236 и. кроме того, разностью между 4,236 и 4. Другие множители приводят к другим последовательностям, все они основаны на коэффициентах Фибоначчи.

1. Никакие из двух последовательных чисел Фибоначчи не имеют общих делителей.

2. Если члены последовательности Фибоначчи пронумеровать как 1, 2, 3, 4, 5, 6, 7 и т. д., мы обнаружим, что, за исключением четвертого члена (число 3), номер любого числа Фибоначчи, являющегося простым числом (т. е. не имеющим иных делителей, кроме себя самого и единицы), также является простым чистом. Сходным образом, за исключением четвертого члена последовательности Фибоначчи (число 3), все со ставные номера членов последовательности (то есть те, что имеют как минимум два делителя за исключением себя самого и единицы), соответствуют составным числам Фибоначчи, что и показывает приведенная ниже таблица. Обратное не всегда оказывается верным.

3. Сумма любых десяти членов последовательности делится на одиннадцать.

4. Сумма всех чисел Фибоначчи до определенной точки последовательности плюс единица равна числу Фибоначчи, отстоящему на две позиции от последнего прибавленного числа.

5. Сумма квадратов любых последовательных членов, начинающихся с первой 1, всегда будет равна последнему (из данной выборки) числу последовательности, умноженному на следующий член.

6. Квадрат числа Фибоначчи минус квадрат второго члена последовательности в сторону уменьшения всегда будет числом Фибоначчи.

7. Квадрат любого числа Фибоначчи равен предыдущему члену последовательности, умноженному на следующее число в последовательности, плюс или минус единица. Прибавление и вычитание единицы чередуются по мере развития последовательности.

8. Сумма квадрата числа Fn и квадрата следующего числа Фибоначчи F равна числу Фибоначчи F,. Формула F - + F 2 = F„ , применима к прямоугольным треугольникам, где сумма квадратов двух более коротких сторон равна квадрату самой длинной стороны. Справа приведен пример, использующий F5, F6 и квадратный корень из Fn.

10. Одно из удивительных явлений, которое, насколько нам известно, до сих пор не упоминалось, состоит в том, что отношения между числами Фибоначчи равны числам, очень близким к тысячным долям других чисел Фибоначчи, при разности, равной тысяч ной доле еще одного числа Фибоначчи (см. рис. 3-2). Так, в направлении возрастания отношение двух идентичных чисел Фибоначчи равно 1, или 0,987 плюс 0,013: соседние числа Фибоначчи имеют отношение 1.618. или 1,597 плюс 0,021; числа Фибоначчи, расположенные с двух сторон от некоторого члена последовательности, имеют отношение 2.618, или 2.584 плюс 0,034, и так далее. В обрат ном направлении соседние числа Фибоначчи имеют отношение 0.618. или 0,610 плюс 0,008: числа Фибоначчи, расположенные с двух сторон от некоторого члена последовательности, имеют отношение 0.382, или 0.377 плюс 0,005; числа Фибоначчи между которыми расположены два члена последовательности, имеют отношение 0.236, или 0,233 плюс 0,003: числа Фибоначчи, между которыми расположены три члена последовательности, имеют отношение 0 146. или 0.144 плюс 0,002: числа Фибоначчи, между которыми расположены четыре члена последовательности, имеют отношение 0,090, или 0,089 плюс 0.001: числа Фибоначчи, между которыми расположены пять членов последовательности, имеют отношение 0.056. или 0,055 плюс 0,001; числа Фибоначчи, между которыми расположено от шести до двенадцати членов последовательности, имеют отношения, которые сами являются тысячными долями чисел Фибоначчи, начиная с 0,034. Интересно, что в этом анализе коэффициент, связывающий числа Фибоначчи, между которыми располагаются тринадцать членов последовательности, снова начинает ряд с числа 0.001, с тысячной доли того числа, где он начался! При всех подсчетах мы действительно получаем подобие или «самовоспроизведение в бесконечном ряду», раскрывающее свойства «самой прочной связи среди всех математических отношений».

И, наконец, заметим, что(V5 + 1)/2 = 1.618 и[\^5- 1)/2 = 0.618. где V5 = 2,236. 5 оказывается наиболее важным для волнового принципа числом, а его квадратный корень является математическим ключом к числу ф.

Число 1,618 (или 0,618) известно как золотое отношение, или золотое среднее. Связанная с ним пропорциональность приятна для глаза и уха. Оно проявляется и в биологии, и в музыке, и в живописи, и в архитектуре. В своей статье, вышедшей в декабре 1975 года в журнале Smithsonian Magazine, Вильям Хоффер сказал:

«...Отношение числа 0,618034 к 1 является математической основой формы игральных карт и Парфенона, подсолнуха и морской раковины, греческих ваз и спиральных галактик внешнего космоса. В основании очень многих произведений искусства и архитектуры греков лежит эта пропорция. Они называли ее «золотая середина».

Плодовитые кролики Фибоначчи выскакивают в самых неожиданных местах. Числа Фибоначчи, несомненно, являются частью мистической природной гармонии, которая приятна для ощущений, приятно выглядит и даже звучит приятно. Музыка, к примеру, основана на октаве в восемь нот. На фортепиано это представлено 8 белыми и 5 черными клавишами - в целом 13. Не случайно, что музыкальный интервал, приносящий нашему слуху самое большое наслаждение - это секста. Нота «ми» вибрирует в отношении 0.62500 к ноте «до». Это всего лишь на 0.006966 отстоит от точной золотой середины. Пропорции сексты передают приятные для слуха вибрации улитке среднего уха - органа, который тоже имеет форму логарифмической спирали.

Постоянное возникновение чисел Фибоначчи и золотой спирали в природе точно объясняет, почему отношение 0,618034 к 1 настолько приятно в произведениях искусства. Человек видит в искусстве отражение жизни, которая имеет в основании золотую середину».

Природа использует золотое отношение в своих наиболее совершенных творениях - от таких мелких, как микроизвилины мозга и молекулы ДНК (см. рис. 3 9), до таких крупных, как галактики. Оно проявляется и таких различных явлениях, как рост кристаллов, преломление светового луча в стекле, строение мозга и нервной системы, музыкальные построения, структура растений и животных. Наука предоставляет все больше свидетельств того, что у природы действительно есть главный пропорциональный принцип. Кстати, вы держите эту книгу двумя из своих пяти пальцев, причем каждый палец состоит из трех частей. Итого: пять единиц, каждая из которых делится на три - прогрессия 5-3-5-3, подобная той, что лежит в основе волнового принципа.

Симметричная и пропорциональная форма, способствует наилучшему зрительному восприятию и вызывает ощущение красоты и гармонии. Целостный образ всегда состоит из частей разного размера, находящихся в определённом соотношении друг с другом и целым. Золотое сечение - высшее проявление совершенства целого и его частей в науке, искусстве и природе.

Если на простом примере, то Золотое Сечение - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.

Если мы примем весь отрезок c за 1, то отрезок a будет равен 0,618, отрезок b - 0,382, только так будет соблюдено условие Золотого Сечения (0,618/0,382=1,618; 1/0,618=1,618). Отношение c к a равно 2,618, а с к b 1,618. Это всё те же, уже знакомые нам, коэффициенты Фибоначчи.

Разумеется есть золотой прямоугольник, золотой треугольник и даже золотой кубоид. Пропорции человеческого тела во многих соотношениях близки к Золотому Сечению.

Но самое интересное начинается, когда мы объединим полученные знания. На рисунке наглядно показана связь между последовательностью Фибоначчи и Золотым сечением. Мы начинаем с двух квадратов первого размера. Сверху добавляем квадрат второго размера. Подрисовываем рядом квадрат со стороной, равной сумме сторон двух предыдущих, третьего размера. По аналогии появляется квадрат пятого размера. И так далее пока не надоест, главное, чтобы длина стороны каждого следующего квадрата равнялась сумме длин сторон двух предыдущих. Мы видим серию прямоугольников, длины сторон, которых являются числами Фибоначчи, и, как не странно, они называются прямоугольниками Фибоначчи.

Если мы проведём плавную линий через углы наших квадратов, то получим ни что иное, как спираль Архимеда, увеличение шага которой всегда равномерно.


Каждый член золотой логарифмической последовательности явлется степенью Золотой Пропорции (z ). Часть ряда выглядит примерно так: ... z -5 ; z -4 ; z -3 ; z -2 ; z -1 ; z 0 ; z 1 ; z 2 ; z 3 ; z 4 ; z 5 ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим z=1,618 , тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618 , но и сложением двух предыдущих. Таким образом экспоненциальный рост в последовательности обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
От куда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, потом тринадцатью, 21, 34, 55...

Loading...Loading...