Функция. Область определения и область значений функции

Как ?
Примеры решений

Если где-то нет чего-то, значит, где-то что-то есть

Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия – . Активное обсуждение данного понятия началось в статье о множествах и продолжилось на первом уроке о графиках функций , где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.

Предполагается, читатель знает область определения следующих функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, синуса, косинуса. Они определены на (множестве всех действительных чисел) . За тангенсы, арксинусы, так и быть, прощаю =) – более редкие графики запоминаются далеко не сразу.

Область определения – вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной , навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.

Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения – это множество значений «икс» , для которых существуют значения «игреков». Рассмотрим условный пример:

Область определения данной функции представляет собой объединение промежутков:
(для тех, кто позабыл: – значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».

Грубо говоря, где область определения – там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения и графика там нет.

Как найти область определения функции? Многие помнят детскую считалку: «камень, ножницы, бумага», и в данном случае её можно смело перефразировать: «корень, дробь и логарифм». Таким образом, если вам на жизненном пути встречается дробь, корень или логарифм, то следует сразу же очень и очень насторожиться! Намного реже встречаются тангенс, котангенс, арксинус, арккосинус, и о них мы тоже поговорим. Но сначала зарисовки из жизни муравьёв:

Область определения функции, в которой есть дробь

Предположим, дана функция, содержащая некоторую дробь . Как вы знаете, на ноль делить нельзя: , поэтому те значения «икс», которые обращают знаменатель в ноль – не входят в область определения данной функции .

Не буду останавливаться на самых простых функциях вроде и т.п., поскольку все прекрасно видят точки, которые не входят в их области определения. Рассмотрим более содержательные дроби:

Пример 1

Найти область определения функции

Решение : в числителе ничего особенного нет, а вот знаменатель должен быть ненулевым. Давайте приравняем его к нулю и попытаемся найти «плохие» точки:

Полученное уравнение имеет два корня: . Данные значения не входят в область определения функции . Действительно, подставьте или в функцию и вы увидите, что знаменатель обращается в ноль.

Ответ : область определения:

Запись читается так: «область определения – все действительные числа за исключением множества, состоящего из значений ». Напоминаю, что значок обратного слеша в математике обозначает логическое вычитание , а фигурные скобки – множество . Ответ можно равносильно записать в виде объединения трёх интервалов:

Кому как нравится.

В точках функция терпит бесконечные разрывы , а прямые, заданные уравнениями являются вертикальными асимптотами для графика данной функции. Впрочем, это уже немного другая тема, и далее я на этом не буду особо заострять внимание.

Пример 2

Найти область определения функции

Задание, по существу, устное и многие из вас практически сразу найдут область определения. Ответ в конце урока.

Всегда ли дробь будет «нехорошей»? Нет. Например, функция определена на всей числовой оси. Какое бы значение «икс» мы не взяли, знаменатель не обратится в ноль, более того, будет всегда положителен: . Таким образом, область определения данной функции: .

Все функции наподобие определены и непрерывны на .

Чуть более сложнА ситуация, когда знаменатель оккупировал квадратный трёхчлен:

Пример 3

Найти область определения функции

Решение : попытаемся найти точки, в которых знаменатель обращается в ноль. Для этого решим квадратное уравнение :

Дискриминант получился отрицательным, а значит, действительных корней нет, и наша функция определена на всей числовой оси.

Ответ : область определения:

Пример 4

Найти область определения функции

Это пример для самостоятельного решения. Решение и ответ в конце урока. Советую не лениться с простыми задачками, поскольку к дальнейшим примерам накопится недопонимание.

Область определения функции с корнем

Функция с квадратным корнем определена только при тех значениях «икс», когда подкоренное выражение неотрицательно : . Если корень расположился в знаменателе , то условие очевидным образом ужесточается: . Аналогичные выкладки справедливы для любого корня положительной чётной степени: , правда, корень уже 4-й степени в исследованиях функций не припоминаю.

Пример 5

Найти область определения функции

Решение : подкоренное выражение должно быть неотрицательным:

Прежде чем продолжить решение, напомню основные правила работы с неравенствами, известные ещё со школы.

Обращаю особое внимание! Сейчас рассматриваются неравенства с одной переменной – то есть для нас существует только одна размерность по оси . Пожалуйста, не путайте с неравенствами двух переменных , где геометрически задействована вся координатная плоскость. Однако есть и приятные совпадения! Итак, для неравенства равносильны следующие преобразования:

1) Слагаемые можно переносить из части в часть, меняя у них (слагаемых) знаки.

2) Обе части неравенства можно умножить на положительное число.

3) Если обе части неравенства умножить на отрицательное число, то необходимо сменить знак самого неравенства . Например, если было «больше», то станет «меньше»; если было «меньше либо равно», то станет «больше либо равно».

В неравенстве перенесём «тройку» в правую часть со сменой знака (правило №1):

Умножим обе части неравенства на –1 (правило №3):

Умножим обе части неравенства на (правило №2):

Ответ : область определения:

Ответ также можно записать эквивалентной фразой: «функция определена при ».
Геометрически область определения изображается штриховкой соответствующих интервалов на оси абсцисс. В данном случае:

Ещё раз напоминаю геометрический смысл области определения – график функции существует только на заштрихованном участке и отсутствует при .

В большинстве случаев годится чисто аналитическое нахождение области определения, но когда функция сильно заморочена, следует чертить ось и делать пометки.

Пример 6

Найти область определения функции

Это пример для самостоятельного решения.

Когда под квадратным корнем находится квадратный двучлен или трёхчлен, ситуация немного усложняется, и сейчас мы подробно разберём технику решения:

Пример 7

Найти область определения функции

Решение : подкоренное выражение должно быть строго положительным, то есть нам необходимо решить неравенство . На первом шаге пытаемся разложить квадратный трёхчлен на множители:

Дискриминант положителен, ищем корни:

Таким образом, парабола пересекает ось абсцисс в двух точках, а это значит, что часть параболы расположена ниже оси (неравенство ), а часть параболы – выше оси (нужное нам неравенство ).

Поскольку коэффициент , то ветви параболы смотрят вверх. Из вышесказанного следует, что на интервалах выполнено неравенство (ветки параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке ниже оси абсцисс, что соответствует неравенству :

! Примечание: если вам не до конца понятны объяснения, пожалуйста, начертите вторую ось и параболу целиком! Целесообразно вернуться к статье и методичке Горячие формулы школьного курса математики .

Обратите внимание, что сами точки выколоты (не входят в решение), поскольку неравенство у нас строгое.

Ответ : область определения:

Вообще, многие неравенства (в том числе рассмотренное) решаются универсальным методом интервалов , известным опять же из школьной программы. Но в случаях квадратных дву- и трёхчленов, на мой взгляд, гораздо удобнее и быстрее проанализировать расположение параболы относительно оси . А основной способ – метод интервалов мы детально разберём в статье Нули функции. Интервалы знакопостоянства .

Пример 8

Найти область определения функции

Это пример для самостоятельного решения. В образце подробно закомментирована логика рассуждений + второй способ решения и ещё одно важное преобразование неравенства, без знания которого студент будет хромать на одну ногу…, …хмм… на счёт ноги, пожалуй, погорячился, скорее – на один палец. Большой палец.

Может ли функция с квадратным корнем быть определена на всей числовой прямой? Конечно. Знакомые всё лица: . Или аналогичная сумма с экспонентой: . Действительно, для любых значения «икс» и «ка»: , поэтому подАвно и .

А вот менее очевидный пример: . Здесь дискриминант отрицателен (парабола не пересекает ось абсцисс), при этом ветви параболы направлены вверх, следовательно, и область определения: .

Вопрос противоположный: может ли область определения функции быть пустой ? Да, и сразу напрашивается примитивный пример , где подкоренное выражение отрицательно при любом значении «икс», и область определения: (значок пустого множества). Такая функция не определена вообще (разумеется, график тоже иллюзорен).

С нечётными корнями и т.д. всё обстоит гораздо лучше – тут подкоренное выражение может быть и отрицательным . Например, функция определена на всей числовой прямой. Однако у функции единственная точка всё же не входит в область определения, поскольку обращают знаменатель в ноль. По той же причине для функции исключаются точки .

Область определения функции с логарифмом

Третья распространённая функция – логарифм. В качестве образца я буду рисовать натуральный логарифм, который попадается примерно в 99 примерах из 100. Если некоторая функция содержит логарифм , то в её область определения должны входить только те значения «икс», которые удовлетворяют неравенству . Если логарифм находится в знаменателе: , то дополнительно накладывается условие (так как ).

Пример 9

Найти область определения функции

Решение : в соответствии с вышесказанным составим и решим систему:

Графическое решение для чайников:

Ответ : область определения:

Остановлюсь ещё на одном техническом моменте – у меня ведь не указан масштаб и не проставлены деления по оси. Возникает вопрос: как выполнять подобные чертежи в тетради на клетчатой бумаге? Отмерять ли расстояние между точками по клеточкам строго по масштабу? Каноничнее и строже, конечно, масштабировать, но вполне допустим и схематический чертёж, принципиально отражающий ситуацию.

Пример 10

Найти область определения функции

Для решения задачи можно использовать метод предыдущего параграфа – проанализировать, как парабола расположена относительно оси абсцисс. Ответ в конце урока.

Как видите, в царстве логарифмов всё очень похоже на ситуацию с квадратным корнем: функция (квадратный трёхчлен из Примера №7) определена на интервалах , а функция (квадратный двучлен из Примера №6) на интервале . Неловко уже и говорить, функции типа определены на всей числовой прямой.

Полезная информация : интересна типовая функция , она определена на всей числовой прямой кроме точки . Согласно свойству логарифма , «двойку» можно вынести множителем за пределы логарифма, но, чтобы функция не изменилась, «икс» необходимо заключить под знак модуля: . Вот вам и ещё одно «практическое применение» модуля =). Так необходимо поступать в большинстве случаев, когда вы снОсите чётную степень, например: . Если же основание степени заведомо положительно, например, , то в знаке модуля отпадает необходимость и достаточно обойтись круглыми скобками: .

Чтобы не повторяться, давайте усложним задание:

Пример 11

Найти область определения функции

Решение : в данной функции у нас присутствует и корень и логарифм.

Подкоренное выражение должно быть неотрицательным: , а выражение под знаком логарифма – строго положительным: . Таким образом, необходимо решить систему:

Многие из вас прекрасно знают или интуитивно догадываются, что решение системы должно удовлетворять каждому условию.

Исследуя расположение параболы относительно оси , приходим к выводу, что неравенству удовлетворяет интервал (синяя штриховка):

Неравенству , очевидно, соответствует «красный» полуинтервал .

Поскольку оба условия должны выполняться одновременно , то решением системы является пересечение данных интервалов. «Общие интересы» соблюдены на полуинтервале .

Ответ : область определения:

Типовое неравенство , как демонстрировалось в Примере №8, нетрудно разрешить и аналитически.

Найденная область определения не изменится для «похожих функций», например, для или . Также можно добавить какие-нибудь непрерывные на функции, например: , или так: , или даже так: . Как говорится, корень и логарифм – вещь упрямая. Единственное, если одну из функций «сбросить» в знаменатель, то область определения изменится (хотя в общем случае это не всегда справедливо). Ну а в теории матана по поводу этого словесного… ой… существуют теоремы.

Пример 12

Найти область определения функции

Это пример для самостоятельного решения. Использование чертежа вполне уместно, так как функция не самая простая.

Ещё пару примеров для закрепления материала:

Пример 13

Найти область определения функции

Решение : составим и решим систему:

Все действия уже разобраны по ходу статьи. Изобразим на числовой прямой интервал, соответствующий неравенству и, согласно второму условию, исключим две точки:

Значение оказалось вообще не при делах.

Ответ : область определения

Небольшой математический каламбур на вариацию 13-го примера:

Пример 14

Найти область определения функции

Это пример для самостоятельного решения. Кто пропустил, тот в пролёте;-)

Завершающий раздел урока посвящен более редким, но тоже «рабочим» функциям:

Области определения функций
с тангенсами, котангенсами, арксинусами, арккосинусами

Если в некоторую функцию входит , то из её области определения исключаются точки , где Z – множество целых чисел . В частности, как отмечалось в статье Графики и свойства элементарных функций , у функции выколоты следующие значения:

То есть, область определения тангенса: .

Убиваться сильно не будем:

Пример 15

Найти область определения функции

Решение : в данном случае и в область определения не войдут следующие точки:

Скинем «двойку» левой части в знаменатель правой части:

В результате :

Ответ : область определения: .

В принципе, ответ можно записать и в виде объединения бесконечного количества интервалов, но конструкция получится весьма громоздкой:

Аналитическое решение полностью согласуется с геометрическим преобразованием графика : если аргумент функции умножить на 2, то её график сожмётся к оси в два раза. Заметьте, как у функции уполовинился период, и точки разрыва участились в два раза. Тахикардия.

Похожая история с котангенсом. Если в некоторую функцию входит , то из её области определения исключаются точки . В частности, для функции автоматной очередью расстреливаем следующие значения:

Иными словами:

В математике имеется достаточно небольшое количество элементарных функций, область определения которых ограничена. Все остальные "сложные" функции - это всего лишь их сочетания и комбинации.

1. Дробная функция - ограничение на знаменатель.

2. Корень четной степени - ограничение на подкоренное выражение.

3. Логарифмы - ограничение на основание логарифма и подлогарифмическое выражение.

3. Тригонометрические tg(x) и ctg(x) - ограничение на аргумент.

Для тангенса:

4. Обратные тригонометрические функции.

Арксинус Арккосинус Арктангенс, Арккотангенс

Далее решаются следующие примеры на тему "Область определения функций".

Пример 1 Пример 2
Пример 3 Пример 4
Пример 5 Пример 6
Пример 7 Пример 8
Пример 9 Пример 10
Пример 11 Пример 12
Пример 13 Пример 14
Пример 15 Пример 16

Пример нахождения области определения функции №1

Нахождение области определения любой линейной функции, т.е. функции первой степени:

y = 2x + 3 - уравнение задает прямую на плоскости.

Посмотрим внимательно на функцию и подумаем, какие же числовые значения мы сможем подставить в уравнение вместо переменной х?

Попробуем подставить значение х=0

Так как y = 2·0 + 3 = 3 - получили числовое значение, следовательно функция существует при взятом значении переменной х=0.

Попробуем подставить значение х=10

так как y = 2·10 + 3 = 23 - функция существует при взятом значении переменной х=10 .

Попробуем подставить значение х=-10

так как y = 2·(-10) + 3 = -17 - функция существует при взятом значении переменной х=-10 .

Уравнение задает прямую линию на плоcкости, а прямая не имеет ни начала ни конца, следовательно она существует для любых значений х.


Заметим, что какие бы числовые значения мы не подставляли в заданную функцию вместо х, всегда получим числовое значение переменной y.

Следовательно, функция существует для любого значения x ∈ R или запишем так: D(f) = R

Формы записи ответа: D(f)=R или D(f)=(-∞:+∞)или x∈R или x∈(-∞:+∞)

Сделаем вывод:

Для любой функции вида y = ax + b областью определения является множество действительных чисел.

Пример нахождения области определения функции №2

Задана функция вида:

y = 10/(x + 5) - уравнение гиперболы

Имея дело с дробной функцией, вспомним, что на ноль делить нельзя. Следовательно функция будет существовать для всех значений х, которые не

обращают знаменатель в ноль. Попробуем подставить какие-либо произвольные значения х.

При х = 0 имеем y = 10/(0 + 5) = 2 - функция существует.

При х = 10 имеем y = 10/(10 + 5) = 10/15 = 2/ 3 - функция существует.

При х = -5 имеем y = 10/(-5 + 5) = 10/0 - функция в этой точке не существует.

Т.е. если заданная функция дробная, то необходимо знаменатель приравнять нулю и найти такую точку, в которой функция не существует.

В нашем случае:

x + 5 = 0 → x = -5 - в этой точке заданная функция не существует.

x + 5 ≠ 0 → x ≠ -5

Для наглядности изобразим графически:

На графике также видим, что гипербола максимально близко приближается к прямой х = -5 , но самого значения -5 не достигает.

Видим, что заданная функция существует во всех точках действительной оси, кроме точки x = -5

Формы записи ответа: D(f)=R\{-5} илиD(f)=(-∞;-5) (-5;+∞) или x∈ R\{-5} илиx∈ (-∞;-5) (-5;+∞)

Если заданная функция дробная, то наличие знаменателя накладывает условие неравенства нулю знаменателя.


Пример нахождения области определения функции №3

Рассмотрим пример нахождения области определения функции с корнем четной степени:


Так как квадратный корень мы можем извлечь только из неотрицательного числа, следовательно, функция под корнем - неотрицательна.

2х - 8 ≥ 0

Решим простое неравенство:

2х - 8 ≥ 0 → 2х ≥ 8 → х ≥ 4

Заданная функция существует только при найденных значениях х ≥ 4 или D(f)= . Найдем наибольшее и наименьшее значение функции на этом отрезке.

Производная положительна для всех x из интервала (-1; 1) , то есть, функция арксинуса возрастает на всей области определения. Следовательно, наименьшее значение она принимает при x = -1 , а наибольшее при x = 1 .

Мы получили область значений функции арксинуса .

Пример.

Найдите множество значений функции на отрезке .

Решение.

Найдем наибольшее и наименьшее значение функции на данном отрезке.

Определим точки экстремума, принадлежащие отрезку :

Вычисляем значения исходной функции на концах отрезка и в точках :

Следовательно, множеством значений функции на отрезке является отрезок .

Сейчас покажем, как находить множество значений непрерывной функции y = f(x) промежутках (a; b) , .

Сначала определяем точки экстремума, экстремумы функции, промежутки возрастания и убывания функции на данном интервале. Далее вычисляем на концах интервала и (или) пределы на бесконечности (то есть, исследуем поведение функции на границах интервала или на бесконечности). Этой информации достаточно, чтобы найти множество значений функции на таких промежутках.

Пример.

Определите множество значений функции на интервале (-2; 2) .

Решение.

Найдем точки экстремума функции, попадающие на промежуток (-2; 2) :

Точка x = 0 является точкой максимума, так как производная меняет знак с плюса на минус при переходе через нее, а график функции от возрастания переходит к убыванию.

есть соответствующий максимум функции.

Выясним поведение функции при x стремящемся к -2 справа и при x стремящемся к 2 слева, то есть, найдем односторонние пределы:

Что мы получили: при изменении аргумента от -2 к нулю значения функции возрастают от минус бесконечности до минус одной четвертой (максимума функции при x = 0 ), при изменении аргумента от нуля к 2 значения функции убывают к минус бесконечности. Таким образом, множество значений функции на интервале (-2; 2) есть .

Пример.

Укажите множество значений функции тангенса y = tgx на интервале .

Решение.

Производная функции тангенса на интервале положительна , что указывает на возрастание функции. Исследуем поведение функции на границах интервала:

Таким образом, при изменении аргумента от к значения функции возрастают от минус бесконечности к плюс бесконечности, то есть, множество значений тангенса на этом интервале есть множество всех действительных чисел .

Пример.

Найдите область значений функции натурального логарифма y = lnx .

Решение.

Функция натурального логарифма определена для положительных значений аргумента . На этом интервале производная положительна , это говорит о возрастании функции на нем. Найдем односторонний предел функции при стремлении аргумента к нулю справа, и предел при x стремящемся к плюс бесконечности:

Мы видим, что при изменении x от нуля к плюс бесконечности значения функции возрастают от минус бесконечности к плюс бесконечности. Следовательно, областью значений функции натурального логарифма является все множество действительных чисел.

Пример.

Решение.

Эта функция определена для всех действительных значений x . Определим точки экстремума, а также промежутки возрастания и убывания функции.

Следовательно, функция убывает при , возрастает при , x = 0 - точка максимума, соответствующий максимум функции.

Посмотрим на поведение функции на бесконечности:

Таким образом, на бесконечности значения функции асимптотически приближаются к нулю.

Мы выяснили, что при изменении аргумента от минус бесконечности к нулю (точке максимума) значения функции возрастают от нуля до девяти (до максимума функции), а при изменении x от нуля до плюс бесконечности значения функции убывают от девяти до нуля.

Посмотрите на схематический рисунок.

Теперь хорошо видно, что область значений функции есть .

Нахождение множества значений функции y = f(x) на промежутках требует аналогичных исследований. Не будем сейчас подробно останавливаться на этих случаях. В примерах ниже они нам еще встретятся.

Пусть область определения функции y = f(x) представляет собой объединение нескольких промежутков. При нахождении области значений такой функции определяются множества значений на каждом промежутке и берется их объединение.

Пример.

Найдите область значений функции .

Решение.

Знаменатель нашей функции не должен обращаться в ноль, то есть, .

Сначала найдем множество значений функции на открытом луче .

Производная функции отрицательна на этом промежутке, то есть, функция убывает на нем.

Получили, что при стремлении аргумента к минус бесконечности значения функции асимптотически приближаются к единице. При изменении x от минус бесконечности до двух значения функции убывают от одного до минус бесконечности, то есть, на рассматриваемом промежутке функция принимает множество значений . Единицу не включаем, так как значения функции не достигают ее, а лишь асимптотически стремятся к ней на минус бесконечности.

Действуем аналогично для открытого луча .

На этом промежутке функция тоже убывает.

Множество значений функции на этом промежутке есть множество .

Таким образом, искомая область значений функции есть объединение множеств и .

Графическая иллюстрация.

Отдельно следует остановиться на периодических функциях. Область значений периодических функций совпадает с множеством значений на промежутке, отвечающем периоду этой функции.

Пример.

Найдите область значений функции синуса y = sinx .

Решение.

Эта функция периодическая с периодом два пи. Возьмем отрезок и определим множество значений на нем.

Отрезку принадлежат две точки экстремума и .

Вычисляем значения функции в этих точках и на границах отрезка, выбираем наименьшее и наибольшее значение:

Следовательно, .

Пример.

Найдите область значения функции .

Решение.

Мы знаем, что областью значений арккосинуса является отрезок от нуля до пи, то есть, или в другой записи . Функция может быть получена из arccosx сдвигом и растяжением вдоль оси абсцисс. Такие преобразования на область значений не влияют, поэтому, . Функция получается из растяжением втрое вдоль оси Оy , то есть, . И последняя стадия преобразований – это сдвиг на четыре единицы вниз вдоль оси ординат. Это нас приводит к двойному неравенству

Таким образом, искомая область значений есть .

Приведем решение еще одного примера, но без пояснений (они не требуются, так как полностью аналогичны).

Пример.

Определите область значений функции .

Решение.

Запишем исходную функцию в виде . Областью значений степенной функции является промежуток . То есть, . Тогда

Следовательно, .

Для полноты картины следует поговорить о нахождении области значений функции, которая не является непрерывной на области определения. В этом случае, область определения разбиваем точками разрыва на промежутки, и находим множества значений на каждом из них. Объединив полученные множества значений, получим область значений исходной функции. Рекомендуем вспомнить

Функция-это модель. Определим X, как множество значений независимой переменной // независимая -значит любая.

Функция это правило, с помощью которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной. // т.е. для каждого х есть один у.

Из определения следует, что существует два понятия- независимая переменная (которую обозначаем х и она может принимать любые значения) и зависимая переменная (которую обозначаем y или f(х) и она высчитывается из функции, когда мы подставляем х).

НАПРИМЕР у=5+х

1. Независимая -это х, значит берем любое значение, пусть х=3

2. а теперь вычисляем у, значит у=5+х=5+3=8. (у зависима от х, потому что какой х подставим, такой у и получим)

Говорят, что переменная y функционально зависит от переменной x и обозначается это следующим образом: y = f (x).

НАПРИМЕР.

1.у=1/х. (наз.гипербола)

2. у=х^2. (наз. парабола)

3.у=3х+7. (наз. прямая)

4. у= √ х. (наз. ветвь параболы)

Независимая переменная (кот. мы обозначаем х) имеет название аргумент функции.

Область определения функции

Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f) или D (y).

Рассмотрим D (у) для 1.,2.,3.,4.

1. D (у)= (∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.

2. D (у)= (∞; +∞)//всё мн-во действит.чисел

3. D (у)= (∞; +∞)//всё мн-во действит.чисел

4. D (у)= . Остается найти пересечение множеств таких значений x , что x∈D(f 2) и f 2 (x)∈D(f 1) :

Чтобы arcsinx>0 вспомним свойства функции арксинус . Арксинус возрастает на всей области определения [−1, 1] и обращается в ноль при x=0 , следовательно, arcsinx>0 для любого x из промежутка (0, 1] .

Вернемся к системе:

Таким образом, искомая область определения функции есть полуинтервал (0, 1] .

Ответ:

(0, 1] .

Теперь давайте перейдем к сложным функциям общего вида y=f 1 (f 2 (…f n (x)))) . Область определения функции f в этом случае находится как .

Пример.

Найти область определения функции .

Решение.

Заданную сложную функцию можно расписать как y=f 1 (f 2 (f 3 (x))) , где f 1 – sin , f 2 – функция корень четвертой степени, f 3 – lg .

Нам известно, что D(f 1)=(−∞, +∞) , D(f 2)=}

Loading...Loading...