Катализаторы. Смотреть что такое "Катализатор" в других словарях

Скорость химических реакций может существенно возрасти под действием веществ, которые называют катализаторами .

Явление изменения скорости реакции при наличии катализаторов называют катализом, а реакции с их участием – каталитическими.

Катализатор – это простое или сложное вещество, которое принимает участие в химической реакции и изменяет ее скорость, но в конце остается в химически неизменном состоянии. Если скорость химической реакции под действием катализатора возрастает, то такой катализ называют позитивным, а если уменьшается – то негативным.

Каталитические свойства проявляют переходные металлы и их соединения – оксиды, гидроксиды, сульфиды, амины, аминокислоты и др. Они способны не только значительно ускорять реакции, но и изменять их механизм. Например, при взаимодействии оксида углерода (П) и водорода, в зависимости от природы катализатора, образуются разные продукты – метан или метанол.

В процессе окисления метана кислородом воздуха при наличии разных катализаторов можно получить метанол, формальдегид или муравьиную кислоту.

Катализаторы широко используют в производстве аммиака, серной, азотной, уксусной кислот, каучука, в процессах крекинга нефти, синтеза некоторых лекарственных препаратов и тому подобное. Реакции полимеризации, гидрирования и дегидрирования, получение спиртов, альдегидов, карбоновых кислот с достаточной для технических потребностей скоростью происходят только при наличии катализаторов.

Вещества, которые замедляют скорость химических реакций, называют ингибиторами .

Ингибиторы также широко используют в технике. Их название связано с тем химическим или биохимическим процессом, который они замедляют. В частности, вещества, которые уменьшают скорость коррозии металла, называют ингибиторами коррозии , а вещества, которые тормозят любые процессы окисления разных субстратов молекулярным кислородом, - антиоксидантами.

Катализаторы оценивают по определенным критериям, среди которых к наиболее важным принадлежат: активность, специфичность, стойкость к старению и отравлениям.

Активность определяют по отношению скоростей каталитической и некаталитической реакций. Катализатор тем активнее, чем больше он снижает величину энергии активации реакции.

Специфичность (выборочность) заключается в способности катализатора увеличивать скорость только одной реакции.

На активность катализаторов значительно влияют примеси. Одни из них могут усиливать, а другие – замедлять действие катализаторов. Вещества, которые сами не имеют каталитических свойств, но усиливают действие катализаторов, называют промоторами, или активаторами.

Известно также негативное действие некоторых химических веществ на активность катализаторов, так называемых каталитических ядов. Эти соединения частично, или полностью снижают активность катализаторов.

Одним из важных видов каталитических процессов является ферментный катализ , который происходит под действием катализаторов белковой природы: так называемых ферментов, или энзимов.

Ферменты как биологические катализаторы

Все химические процессы в условиях физиологичной среды организма (гидролиз, протолиз, фосфорелирование, комплексообразование, окислительно-восстановительные реакции) могут происходить только при участии катализаторов, которые называют ферментами, или энзимами.

Ферменты – это вещества белковой природы, которые производятся клетками живых организмов и значительно увеличивают скорость биохимических процессов.

Сейчас известно более 1800 ферментов, из которых много выделено в чистом кристаллическом виде. Считают, что в клетке содержится около 10 тыс. молекул разных ферментов, которые ускоряют свыше 2 тыс. реакций. Четвертая часть изученных в настоящее время ферментов содержат ионы разных металлов и поэтому их называют металлоферментами.

И ферменты, и неорганические катализаторы подчиняются общим законам катализа и характеризуются рядом общих признаков, то есть они:

катализируют только те реакции, которые являются энергетически возможными;

не изменяют направления хода реакций;

уменьшают энергию активации реакций, тем самым ускоряя их;

не расходуются в процессе реакции.

Однако ферменты характеризуются и особенными признаками, которые дают возможность отличить их от обычных неорганических катализаторов. Эти отличия связаны с особенностями строения ферментов, которые являются сложными макромолекулами белковой природы.

Катализаторы обеспечивают более быстрый исход любой химической реакции. Реагируя с исходными веществами реакции, катализатор образует с ними промежуточное соединение, после чего это соединение подвергается преобразованию и в итоге распадается на необходимый конечный продукт реакции, а также на неподвергшийся изменениям катализатор. После распада и образования необходимого продукта катализатор снова вступает в реакцию с исходными реагентами, образуя все большее количество исходного вещества. Данный цикл может повторяться миллионы раз, и если извлечь катализатор из группы реагентов, реакция может длиться в сотни и тысячи раз медленнее.

Катализаторы гетерогенными и гомогенными. Гетерогенные катализаторы в ходе химической реакции образуют самостоятельную фазу, которая отделена разделяющей границей от фазы исходных реагентов. Гомогенные катализаторы, напротив, являются частью одной и той же фазы с исходными реагентами.

Существуют катализаторы органического происхождения, которые участвуют в брожении и созревании, они называются ферментами. Без их непосредственного участия человечество не смогло бы получать большую часть спиртных напитков, молочнокислых продуктов, продуктов из теста, а также мед и . Без участия ферментов был бы невозможен обмен веществ у живых организмов.

Требования к веществам катализаторам

Катализаторы, которые широко применяются в промышленном производстве, должны обладать целым рядом свойств, необходимых для успешного завершения реакции. Катализаторы должны быть высокоактивными, селективными, механически прочными и термоустойчивыми. Они должны обладать продолжительным действием, легкой регенерацией, устойчивостью к каталитическим ядам, гидродинамическими свойствами, а также небольшой ценой.

Современное применение промышленных катализаторов

В нынешнем высокотехнологическом производстве катализаторы применяются при крекинге нефтепродуктов, получении ароматических углеводородов и высокооктанового , получении чистого водорода, кислорода или инертных газов, синтезе аммиака, получении и серной кислоты без дополнительных затрат. Также катализаторы широко применяются для получения азотной кислоты, фталевого ангидрида, метилового и спирта и ацетальдегида. Наиболее широко применяемые катализаторы – это металлическая платина, ванадий, никель, хром, железо, цинк, серебро, алюминий и палладий. Также довольно часто применяются некоторые соли этих металлов.

При попытке поджечь сахар он будет плавиться и обугливаться Положите на сахар горку пепла, который будет служить катализатором С пеплом сахар загорится! Сахар горит, если на него посыпать пеплом! При отсутствии пепла (катализатора) - сахар только обугливается Окисление спирта в присутствии медного катализатора

Вы когда-нибудь пробовали поджечь сахар? Казалось бы, сильно экзотермическая реакция С 12 Н 22 О 11 +12О 2 →12СО 2 +11Н 2 О должна идти легко. Не тут-то было - при сильном нагреве сахар плавится, приобретает коричневую окраску и запах карамели, но не загорается. И всё же сжечь сахар можно. Для этого надо посыпать его табачным пеплом и внести в пламя - тогда сахар загорится. Такое же воздействие на эту реакцию оказывают и некоторые другие вещества, например соли лития или оксид хрома (III).

Химические реакции, которые «не желают» протекать сами по себе или идут с очень малой скоростью и требуют дополнительного «стимула» - присутствия веществ, которые в результате реакции остаются неизменными, - происходят повсеместно. Это, во-первых, абсолютно все химические процессы, лежащие в основе жизнедеятельности клеток. Они протекают только в присутствии ферментов , а отсутствие в организме хотя бы одного из них нарушает обмен веществ и чревато тяжёлой болезнью или же просто несовместимо с жизнью.

Кроме того, к таким реакциям относится большинство крупнотоннажных процессов, используемых в химической промышленности. Получение серной кислоты , переработка нефти , синтез аммиака немыслимы без участия «посторонних веществ», называемых катализаторами . Как выглядел бы наш мир без катализаторов? Он был бы гораздо статичнее, ведь многие химические реакции просто не происходили бы. Впрочем, изучать химию всё равно было бы некому: жизнь в таком мире появиться не может.

Катализаторы позволяют проводить химические процессы при гораздо более мягких условиях. А кроме того, в присутствии катализаторов идут реакции, которые вообще невозможны без их участия ни в каких условиях.

При этом количество катализатора, необходимое для превращения огромной массы реагентов в продукты реакции, несоизмеримо мало. Одна молекула фермента катализирует разложение 5 млн. молекул сахара за 1 с!

Катализ и его секреты

Но в чём скрыта тайна веществ - катализаторов ? Давайте разберёмся, почему сахар и другие органические вещества самопроизвольно не превращаются в углекислый газ и воду - гораздо более энергетически выгодные (говорят ещё «термодинамически устойчивые») соединения. Разве это не удивительно? Ведь если положить, скажем, шарик на вершину горки, он тут же займёт более энергетически выгодное положение - скатится вниз. Если же его оградить барьером, он скатиться не сможет. Чтобы оказаться внизу и тем самым уменьшить свою потенциальную энергию, шарику нужно преодолеть барьер, а для этого ему нужно подвести дополнительную энергию.

Все существующие химические вещества, даже весьма термодинамически неустойчивые, окружены на своих энергетических «вершинах» подобными барьерами. Порой энергия, необходимая для их преодоления, сравнима с кинетической энергией теплового движения молекул. Тогда достаточно простого смешения реагентов - и реакция происходит при комнатной температуре. Нагревая реакционную смесь, можно преодолеть барьер чуть повыше. Но иногда он слишком высок, и в этом случае придётся или искать способы доставки необходимой энергии молекулам реагентов, или попытаться обойти энергетический барьер.

Как это сделать? Оказывается, катализатор может, подобно опытному проводнику, хорошо знающему местность, повести реакцию по совершенно иному пути. При этом её механизм претерпевает сильные изменения. Существует масса способов обойти энергетическую «гору». Каждый катализатор , работающий в конкретной реакции, выбирает для процесса свой путь. При этом новый маршрут может быть гораздо длиннее изначального: число промежуточных стадий и продуктов реакции иногда возрастает в несколько раз. Но зато количество энергии, требуемое на каждой стадии, оказывается существенно меньше, чем в отсутствие «проводника». В итоге, пройдя более длинный путь при помощи катализатора, реакция даёт желаемый результат значительно быстрее.

Однако «постороннее вещество» может воздействовать на ход реакции и противоположным образом: привести её к труднопреодолимому энергетическому барьеру. Тогда процесс замедляется. Такой «отрицательный» катализ называется ингибированием (от лат. inhibeo - «останавливаю», «сдерживаю»), а «катализаторы, действующие наоборот» - ингибиторами .

Зачем нужно замедлять скорость реакции? Существуют процессы, которые необходимы человеку, а также существуют такие процессы, проведение которых может пагубно сказаться как на человека, так и на предметах его обихода и окружающей среде. например появление ржавчины - коррозия металлов , гниение продуктов питания. Такими реакциями могут быть взрывы различных химических веществ, которые чувствительны к движению или сотрясению. Нужно учитывать, что химические реакции, в результате которых образуется лишь одно вещество - достаточно редкие. В основном при реакциях образуется более одного вещества. Особенно ярко такое явление наблюдается в органической химии.

В организмах живых существ и множестве других процессах, протекающих в нашей среде обитания часто необходимо, чтобы в процессе реакции получалось только одно нужное нам вещество или продукт реакции. Именно в этом случае применяется катализ . Грамотный подбор катализатора позволяет проводить химические процессы только в нужном для нас направлении и с получением требуемого нам вещества, при этом исключая выход других побочных эффектов реакции.

Катализаторы подразделяются на гомогенные и гетерогенные . Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный - образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества . Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al 2 O 3 , TiO 2 , ThO 2 , алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO .

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных , существуют катализаторы окисления-восстановления ; для них характерно присутствие переходного металла или его соединения (Со +3 , V 2 O 5 +MoO 3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

Много реакций осуществлено при помощи катализаторов, которые действуют через координацию реагентов у атома или иона переходного металла (Ti, Rh, Ni). Такой катализ называется координационным .

Если катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получается оптически активный продукт.

В современной науке и технике часто применяют системы из нескольких катализаторов , каждый из которых ускоряет разные стадии реакции . Катализатор также может увеличивать скорость одной из стадий каталитического цикла, осуществляемого другим катализатором. Здесь имеет место «катализ катализа», или катализ второго уровня .

В биохимических реакциях роль катализаторов играют ферменты.

Катализаторы следует отличать от инициаторов. Например, перекиси распадаются на свободные радикалы, которые могут инициировать радикальные цепные реакции. Инициаторы расходуются в процессе реакции, поэтому их нельзя считать катализаторами.

механизм катализа : 1)мех. стадийный(изменение пути реакции) 2)ассоциактивный 3)ферментативный 4) микрогетерогенный

Спецефичность катализа заключается в том, что в присутствии катализатора изменяется путь, по которому проходит суммарная реакция, образуются другие переходные состояния с иными энергиями активации, а поэтому изменяется и скорость хим. реакции.

переработка древесины требует больших затрат в производстве, поэтому используют катализаторы, которые ускоряют процесс химического превращения, увеличивают выход продукта и уменьшают выброс вредных веществ. приемущество изп. катализаторов в том что они не требуют больших затрат.

28. Растворы. Процессы при образовании растворов. Идеальные и реальные растворы. Гидраты и сольваты.

Растворы - гомогенные (однородные) системы, то есть каждый из компонентов распределён в массе другого в виде молекул, атомов или ионов

Процесс взаимодействия растворителя и растворённого вещества называется сольватацией (если растворителем является вода - гидратацией ).

Энергетической характеристикой растворения является теплота образования раствора , рассматриваемая как алгебраическая сумма тепловых эффектов всех эндо- и экзотермических стадий процесса. Наиболее значительными среди них являются: – поглощающие тепло процессы - разрушение кристаллической решётки, разрывы химических связей в молекулах; – выделяющие тепло процессы - образование продуктов взаимодействия растворённого вещества с растворителем (гидраты) и др.

СОЛЬВАТЫ, продукты присоединения растворителя к растворенным веществам. Обычно сольваты образуются в растворе, но нередко (при охлаждении раствора, испарениирастворителя и др.) м. б. получены в виде кристаллич. фаз-кристаллосольватов.

Гидраты - продукты присоединения воды к неорганическим и органическим веществам

Катализ – это процесс изменения скорости химической реакции при помощи катализаторов – , принимающих участие в химической реакции, но в состав конечных продуктов не входящих и в результате реакции не расходующихся.

Одни катализаторы ускоряют реакцию (положительный катализ ), другие – замедляют (отрицательный катализ ). Отрицательный катализ называют ингибированием , а катализаторы, понижающие скорость химической реакции – ингибиторами .

Различают гомогенный и гетерогенный катализ.

Гомогенный катализ.

При гомогенном (однородном) катализе реагирующие вещества и катализатор находятся в одинаковом и между ними отсутствует поверхность раздела. Пример гомогенного катализа – реакция окисления SO 2 и SO 3 в присутствии катализатора NO (реагирующие вещества и катализатор являются газами).

Гетерогенный катализ.

В случае гетерогенного (неоднородного) катализа реагирующие вещества и катализатор находятся в различных агрегатных состояниях и между ними существует поверхность (граница) раздела. Обычно катализатор – твердое вещество, а реагирующие вещества – жидкости или газы. Пример гетерогенного катализа – окисление NN 3 до NO в присутствии Pt (катализатор – твердое вещество).

Механизм действия катализаторов

Действие положительных катализаторов сводится к понижению энергии активации реакции Е а(исх) , действие ингибиторов – противоположное.

Так, для реакции 2 HI = H 2 + I 2 Е а(исх) =184 кДж/моль. Когда же эта реакция протекает в присутствии катализатора Au или Pt , то Е а(исх) =104 кДж/моль, соответственно.

Механизм действия катализатора при гомогенном катализе объясняется образованием промежуточных соединений между катализатором и одним из реагирующих веществ. Далее промежуточное соединение реагирует со вторым исходным веществом, в результате чего образуется продукт реакции и катализатор в первоначальном виде. Так как скорость обоих промежуточных процессов значительно больше скорости прямого процесса, то реакция с участием катализатора протекает значительно быстрее, чем без него.

Например, реакция:

SO 2 +1/2 O 2 = SO 3 протекает очень медленно, а если использовать катализатор NO

то реакции NO +1/2О 2 = NO 2 и NO 2 + SO 2 = SO 3 + NO протекают быстро.

Механизм действия катализатора при гетерогенном катализе иной. В этом случае реакция протекает вследствие адсорбции молекул реагирующих веществ поверхностью катализатора (поверхность катализатора неоднородна: на ней имеются так называемые активные центры , на которых и адсорбируются частицы реагирующих веществ.). Увеличение скорости химической реакции достигается, в основном, за счет понижения энергии активации адсорбированных молекул, а также, отчасти, за счет увеличения концентрации реагирующих веществ в местах, где произошла адсорбция.

Каталитические яды и промоторы.

Некоторые вещества снижают или полностью уничтожают активность катализатора, такие вещества называют каталитическими ядами . Например, небольшие примеси серы (0,1%) полностью прекращает каталитическое действие металлического катализатора (губчатого железа), использующегося при синтезе аммиака. Вещества, повышающие активность катализатора, называют промоторами. Например, каталитическая активность губчатого железа значительно возрастает при добавлении примерно 2% метаалюмината калия KAlO 2 .

Применение катализаторов

Действие катализатора избирательно и специфично. Это означает, что, применяя различные катализаторы, из одних и тех же веществ можно получить различные продукты. Это особенно характерно для реакций органических веществ. Например, в присутствии катализатора AlO 3 происходит дегидратация этилового спирта, в присутствии Cu – дегидрирование:

Биологические катализаторы, принимающие участие в сложных химических превращениях, протекающих в организме, называются ферментами.

Катализаторы широко используются в производстве серной кислоты, аммиака, каучука, пластмасс и др. веществ.

Loading...Loading...