Метод разложения на множители. Разложение многочленов на множители

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Что такое разложение на множители? Это способ превращения неудобного и сложного примера в простой и симпатичный.) Оч-ч-чень мощный приём! Встречается на каждом шагу и в элементарной математике, и в высшей.

Подобные превращения на математическом языке называются тождественными преобразованиями выражений. Кто не в теме - прогуляйтесь по ссылке. Там совсем немного, просто и полезно.) Смысл любого тождественного преобразования - это запись выражения в другом виде с сохранением его сути.

Смысл разложения на множители предельно прост и понятен. Прямо из самого названия. Можно забыть (или не знать), что такое множитель, но то, что это слово происходит от слова "умножить" сообразить-то можно?) Разложить на множители означает: представить выражение в виде умножения чего-то на чего-то. Да простят мне математика и русский язык...) И всё.

Например, надо разложить число 12. Можно смело записать:

Вот мы и представили число 12 в виде умножения 3 на 4. Прошу заметить, что циферки справа (3 и 4) совсем другие, чем слева (1 и 2). Но мы прекрасно понимаем, что 12 и 3·4 одно и то же. Суть числа 12 от преобразования не изменилась.

А можно разложить 12 по-другому? Легко!

12=3·4=2·6=3·2·2=0,5·24=........

Вариантов разложения - бесконечное количество.

Разложение чисел на множители - штука полезная. Очень помогает, например, при действиях с корнями. Но разложение на множители алгебраических выражений вещь не то, что полезная, она - необходимая! Чисто для примера:

Упростить:

Кто не умеете раскладывать выражение на множители, отдыхает в сторонке. Кто умеет - упрощает и получает:

Эффект потрясающий, правда?) Кстати, решение достаточно простое. Ниже сами увидите. Или, например, такое задание:

Решить уравнение:

х 5 - x 4 = 0

Решается в уме, между прочим. С помощью разложения на множители. Ниже мы решим этот пример. Ответ: x 1 = 0; x 2 = 1 .

Или, то же самое, но для старшеньких):

Решить уравнение:

На этих примерах я показал основное назначение разложения на множители: упрощение дробных выражений и решение некоторых типов уравнений. Рекомендую запомнить практическое правило:

Если перед нами страшное дробное выражение, можно попробовать разложить на множители числитель и знаменатель. Очень часто дробь сокращается и упрощается.

Если перед нами уравнение, где справа - ноль, а слева - не пойми что, можно попробовать разложить левую часть на множители. Иногда помогает).

Основные способы разложения на множители.

Вот они, самые популярные способы:

4. Разложение квадратного трёхчлена.

Эти способы надо запомнить. Именно в таком порядке. Сложные примеры проверяются на все возможные способы разложения. И лучше уж проверять по порядочку, чтобы не запутаться... Вот по порядочку и начнём.)

1. Вынесение общего множителя за скобки.

Простой и надёжный способ. От него плохо не бывает! Бывает либо хорошо, либо никак.) Поэтому он и стоит первым. Разбираемся.

Все знают (я верю!)) правило:

a(b+c) = ab+ac

Или, в более общем виде:

a(b+c+d+.....) = ab+ac+ad+....

Все равенства работают как слева направо, так и наоборот, справа налево. Можно записать:

ab+ac = a(b+c)

ab+ac+ad+.... = a(b+c+d+.....)

Вот и вся суть вынесения общего множителя за скобки.

В левой части а - общий множитель для всех слагаемых. Умножается на всё, что есть). Справа это самое а находится уже за скобками.

Практическое применение способа рассмотрим на примерах. Сначала вариант простой, даже примитивный.) Но на этом варианте я отмечу (зелёным цветом) очень важные моменты для любого разложения на множители.

Разложить на множители:

ах+9х

Какой общий множитель сидит в обоих слагаемых? Икс, разумеется! Его и будем выносить за скобки. Делаем так. Сразу пишем икс за скобками:

ах+9х=х(

А в скобках пишем результат деления каждого слагаемого на этот самый икс. По порядочку:

Вот и всё. Конечно, так подробно расписывать не нужно, Это в уме делается. Но понимать, что к чему, желательно). Фиксируем в памяти:

Пишем общий множитель за скобками. В скобках записываем результаты деления всех слагаемых на этот самый общий множитель. По порядочку.

Вот мы и разложили выражение ах+9х на множители. Превратили его в умножение икса на (а+9). Замечу, что в исходном выражении тоже было умножение, даже два: а·х и 9·х. Но оно не было разложено на множители! Потому, что кроме умножения, в этом выражении было ещё и сложение, знак "+"! А в выражении х(а+9) кроме умножения ничего нет!

Как так!? - слышу возмущённый глас народа - А в скобках!?)

Да, внутри скобок есть сложение. Но фишка в том, что пока скобки не раскрыты, мы рассматриваем их как одну букву. И все действия со скобками делаем целиком, как с одной буквой. В этом смысле в выражении х(а+9) кроме умножения ничего нет. В этом вся суть разложения на множители.

Кстати, можно ли как-то проверить, всё ли правильно мы сделали? Запросто! Достаточно обратно умножить то, что вынесли (икс) на скобки и посмотреть - получилось ли исходное выражение? Если получилось, всё тип-топ!)

х(а+9)=ах+9х

Получилось.)

В этом примитивном примере проблем нет. Но если слагаемых несколько, да ещё с разными знаками... Короче, каждый третий ученик косячит). Посему:

При необходимости проверяем разложение на множители обратным умножением.

Разложить на множители:

3ах+9х

Ищем общий множитель. Ну, с иксом всё ясно, его можно вынести. А есть ли ещё общий множитель? Да! Это тройка. Можно же записать выражение вот так:

3ах+3·3х

Здесь сразу видно, что общий множителем будет . Вот его и выносим:

3ах+3·3х=3х(а+3)

Разложили.

А что будет, если вынести только х? Да ничего особенного:

3ах+9х=х(3а+9)

Это тоже будет разложение на множители. Но в этом увлекательном процессе принято раскладывать всё до упора, пока есть возможность. Здесь в скобках есть возможность вынести тройку. Получится:

3ах+9х=х(3а+9)=3х(а+3)

То же самое, только с одним лишним действием.) Запоминаем:

При вынесении общего множителя за скобки, стараемся вынести максимальный общий множитель.

Продолжаем развлечение?)

Разложить на множители выражение:

3ах+9х-8а-24

Что будем выносить? Тройку, икс? Не-е-е... Нельзя. Напоминаю, выносить можно только общий множитель, который есть во всех слагаемых выражения. На то он и общий. Здесь такого множителя нету... Что, можно не раскладывать!? Ну да, обрадовались, как же... Знакомьтесь:

2. Группировка.

Собственно, группировку трудно назвать самостоятельным способом разложения на множители. Это, скорее, способ выкрутиться в сложном примере.) Надо сгруппировать слагаемые так, чтобы всё получилось. Это только на примере показать можно. Итак, перед нами выражение:

3ах+9х-8а-24

Видно, что какие-то общие буквы и числа имеются. Но... Общего множителя, чтобы был во всех слагаемых - нет. Не падаем духом и разбиваем выражение на кусочки. Группируем. Так, чтобы в каждом кусочке был общий множитель, было чего вынести. Как разбиваем? Да просто ставим скобки.

Напомню, что скобки можно ставить где угодно и как угодно. Лишь бы суть примера не менялась. Например, можно так:

3ах+9х-8а-24 =(3ах+9х)-(8а+24 )

Прошу обратить внимание на вторые скобки! Перед ними стоит знак минус, а и 24 стали положительными! Если, для проверки, обратно раскрыть скобки, знаки поменяются, и мы получим исходное выражение. Т.е. суть выражения от скобок не изменилась.

Но если вы просто воткнули скобки, не учитывая смену знака, например, вот так:

3ах+9х-8а-24 =(3ах+9х)-(8а-24 )

это будет ошибкой. Справа - уже другое выражение. Раскройте скобки и всё станет видно. Дальше можно не решать, да...)

Но возвращаемся к разложению на множители. Смотрим на первые скобки (3ах+9х) и соображаем, можно ли чего вынести? Ну, этот пример мы выше решали, можно вынести 3х:

(3ах+9х)=3х(а+3)

Изучаем вторые скобки, там можно вынести восьмёрку:

(8а+24)=8(а+3)

Всё наше выражение получится:

(3ах+9х)-(8а+24)=3х(а+3)-8(а+3)

Разложили на множители? Нет. В результате разложения должно получиться только умножение, а у нас знак минус всё портит. Но... В обоих слагаемых есть общий множитель! Это (а+3) . Я не зря говорил, что скобки целиком - это, как бы, одна буква. Значит, эти скобки можно вынести за скобки. Да, именно так и звучит.)

Делаем, как было рассказано выше. Пишем общий множитель (а+3) , во вторых скобках записываем результаты деления слагаемых на (а+3) :

3х(а+3)-8(а+3)=(а+3)(3х-8)

Всё! Справа кроме умножения ничего нет! Значит, разложение на множители завершено успешно!) Вот оно:

3ах+9х-8а-24=(а+3)(3х-8)

Повторим кратенько суть группировки.

Если в выражении нет общего множителя для всех слагаемых, разбиваем выражение скобками так, чтобы внутри скобок общий множитель был. Выносим его и смотрим, что получилось. Если повезло, и в скобках остались совершенно одинаковые выражения, выносим эти скобки за скобки.

Добавлю, что группировка - процесс творческий). Не всегда с первого раза получается. Ничего страшного. Иногда приходится менять слагаемые местами, рассматривать разные варианты группировки, пока не найдётся удачный. Главное здесь - не падать духом!)

Примеры.

Сейчас, обогатившись знаниями, можно и хитрые примеры порешать.) Была в начале урока тройка таких...

Упростить:

В сущности, этот пример мы уже решили. Незаметно для себя.) Напоминаю: если нам дана страшная дробь, пробуем разложить числитель и знаменатель на множители. Других вариантов упрощения просто нет.

Ну, знаменатель здесь не раскладывается, а числитель... Числитель мы уже разложили по ходу урока! Вот так:

3ах+9х-8а-24=(а+3)(3х-8)

Пишем результат разложения в числитель дроби:

По правилу сокращения дробей (основное свойство дроби), мы можем разделить (одновременно!) числитель и знаменатель на одно и то же число, или выражение. Дробь от этого не меняется. Вот и делим числитель и знаменатель на выражение (3х-8) . И там и там получим единички. Окончательный результат упрощения:

Особо подчеркну: сокращение дроби возможно тогда и только тогда, когда в числителе и знаменателе кроме умножения выражений ничего нет. Именно потому превращение суммы (разности) в умножение так важно для упрощения. Конечно, если выражения разные, то и не сократится ничего. Бывет. Но разложение на множители даёт шанс. Этого шанса без разложения - просто нет.

Пример с уравнением:

Решить уравнение:

х 5 - x 4 = 0

Выносим общий множитель х 4 за скобки. Получаем:

х 4 (x-1)=0

Соображаем, что произведение множителей равно нулю тогда и только тогда, когда какой-нибудь из них равен нулю. Если сомневаетесь, найдите мне парочку ненулевых чисел, которые при умножении ноль дадут.) Вот и пишем, сначала первый множитель:

При таком равенстве второй множитель нас не волнует. Любой может быть, всё равно в итоге ноль получится. А какое число в четвёртой степени ноль даст? Только ноль! И никакое другое... Стало быть:

С первым множителем разобрались, один корень нашли. Разбираемся со вторым множителем. Теперь нас не волнует уже первый множитель.):

Вот и нашли решение: x 1 = 0; x 2 = 1 . Любой из этих корней подходит к нашему уравнению.

Очень важное замечание. Обратите внимание, мы решали уравнение по кусочкам! Каждый множитель приравнивали к нулю, не обращая внимания на остальные множители. Кстати, если в подобном уравнении будет не два множителя, как у нас, а три, пять, сколько угодно - решать будем точно так же. По кусочкам. Например:

(х-1)(х+5)(х-3)(х+2)=0

Тот, кто раскроет скобки, перемножит всё, тот навсегда зависнет на этом уравнении.) Правильный ученик сразу увидит, что слева кроме умножения ничего нет, справа - ноль. И начнёт (в уме!) приравнивать к нулю все скобочки по порядочку. И получит (за 10 секунд!) верное решение: x 1 = 1; x 2 = -5; x 3 = 3; x 4 = -2.

Здорово, правда?) Такое элегантное решение возможно, если левая часть уравнения разложена на множители. Намёк понятен?)

Ну и, последний пример, для старшеньких):

Решить уравнение:

Чем-то он похож на предыдущий, не находите?) Конечно. Самое время вспомнить, что в алгебре седьмого класса под буквами могут скрываться и синусы, и логарифмы, и всё, что угодно! Разложение на множители работает во всей математике.

Выносим общий множитель lg 4 x за скобки. Получаем:

lg 4 x=0

Это один корень. Разбираемся со вторым множителем.

Вот и окончательный ответ: x 1 = 1; x 2 = 10 .

Надеюсь, вы осознали всю мощь разложения на множители в упрощении дробей и решении уравнений.)

В этом уроке мы познакомились с вынесением общего множителя и группировкой. Остаётся разобраться с формулами сокращённого умножения и квадратным трёхчленом.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Рассматривая умножение многочленов, мы запомнили несколько формул, а именно: формулы для (a + b)², для (a – b)², для (a + b) (a – b), для (a + b)³ и для (a – b)³.

Если данный многочлен окажется совпадающим с одною из этих формул, то его явится возможным разложить на множители. Напр., многочлен a² – 2ab + b², мы знаем, равен (a – b)² [или (a – b) · (a – b), т. е. удалось a² – 2ab + b² разложить на 2 множителя]; также

Рассмотрим второй из этих примеров. Мы видим, что данный здесь многочлен подходит к формуле, получающейся от возведения в квадрат разности двух чисел (квадрат первого числа, минус произведение двойки на первое число и на второе, плюс квадрат второго числа): x 6 есть квадрат первого числа, а, следовательно, само первое число есть x 3 , квадратом второго числа является последний член данного многочлена, т. е. 1, само второе число есть, следовательно, также 1; произведением двойки на первое число и на второе является член –2x 3 , ибо 2x 3 = 2 · x 3 · 1. Поэтому наш многочлен получился от возведения в квадрат разности чисел x 3 и 1, т. е. он равен (x 3 – 1) 2 . Рассмотрим еще 4-ый пример. Мы видим, что данный многочлен a 2 b 2 – 25 можно рассматривать, как разность квадратов двух чисел, а именно квадратом первого числа служит a 2 b 2 , следовательно, само первое число есть ab, квадратом второго числа является 25, почему само второе число есть 5. Поэтому наш многочлен можно рассматривать получившимся от умножения суммы двух чисел на их разность, т. е.

(ab + 5) (ab – 5).

Иногда случается, что в данном многочлене члены расположены не в том порядке, к которому мы привыкли, напр.

9a 2 + b 2 + 6ab – мысленно мы можем переставить второй и третий члены, и тогда нам станет ясным, что наш трехчлен = (3a + b) 2 .

… (переставим мысленно первый и второй члены).

25a 6 + 1 – 10x 3 = (5x 3 – 1) 2 и т. п.

Рассмотрим еще многочлен

a 2 + 2ab + 4b 2 .

Мы видим, что первый член его представляет собою квадрат числа a и третий член представляет собою квадрат числа 2b, но второй член не является произведением двойки на первое число и на второе, – такое бы произведение было бы равно 2 · a · 2b = 4ab. Поэтому нельзя применить к этому многочлену формулу квадрата суммы двух чисел. Если бы кто написал, что a 2 + 2ab + 4b 2 = (a + 2b) 2 , то это было бы неверно – надо тщательно рассмотреть все члены многочлена, прежде чем применять к нему разложение на множители по формулам.

40. Соединение обоих приемов . Иногда при разложении многочленов на множители приходится комбинировать и прием вынесения общего множителя за скобки и прием применения формул. Вот примеры:

1. 2a 3 – 2ab 2 . Вынесем сначала общего множителя 2a за скобки, – получим 2a (a 2 – b 2). Множитель a 2 – b 2 , в свою очередь, разлагается по формуле на множители (a + b) и (a – b).

Иногда приходится применять прием разложения по формулам многократно:

1. a 4 – b 4 = (a 2 + b 2) (a 2 – b 2)

Мы видим, что первый множитель a 2 + b 2 не подходит ни к одной из знакомых формул; мало того, вспоминая особые случаи деления (п. 37), мы установим, что a 2 + b 2 (сумма квадратов двух чисел) вовсе на множители не раскладывается. Второй из полученных множителей a 2 – b 2 (разность квадратом двух чисел) разлагается на множители (a + b) и (a – b). Итак,

41. Применение особых случаев деления . На основании п. 37 мы можем сразу написать, что, напр.,

Формулы сокращенного умножения - это очень удобный инструмент для операций с многочленами. Как правило, это позволяет сократить сложные конструкции полиномов до небольшого выражения, представляемого двучленом. Либо же,в ином порядке - из произведения двух многочленов легко выводится компактный бином.

Такие действия бывают необходимыми при решении тривиальных уравнений и неравенств, а также при различных доказательных задачах.

В прошлых видеоуроках мы рассмотрели формулы разности квадратов и разности кубов. Попытаемся вывести формулу ещё более высокого порядка - найдем, чему равна разность выражений в четвертой степени:

Это выражение сравнительно легко преобразовать, подставив вместо х 4 и у 4 идентичные квадратные выражения (х 2) 2 и (у 2) 2:

х 4 - у 4 = (х 2) 2 - (у 2) 2

В итоге мы получаем разность квадратов, которую можно представить при помощи элементарной ФСУ как:

(х 2) 2 - (у 2) 2 = (х 2 + у 2)(х 2 - у 2)

С другой стороны, вторые скобки полученного выражения содержат разность квадратов, которую можно легко преобразовать:

(х 2 + у 2)(х 2 - у 2) = (х 2 + у 2)((х + у)(х - у))

Отсюда следует, что:

х 4 - у 4 = (х 2 + у 2)(х + у)(х - у)

Оставим основополагающую общую часть (х - у), остальные два выражения в скобках перемножим:

х 4 - у 4 = (х 2 + у 2)(х + у)(х - у) = (х - у)(х 3 + х 2 у + ху 2 + у 3)

Для чего необходимо выделять (х - у), будет показано позже. Итак, мы нашли ещё одну формулу для разности степенных выражений. Это равенство достаточно сложно для выражения - однако стоит понимать, что оно вполне логично вписывается в ряд подобных формул для определения разности квадратов и кубов. Сравним эти формулы между собой, для того, что бы найти общие закономерности:

х 2 - у 2 = (х - у)(х + у)

х 3 - у 3 = (х - у)(х 2 + 2ху + у 2)

х 4 - у 4 = (х - у)(х 3 + х 2 у + ху 2 + у 3)

На видео четко представлено, что разности переменных в различной степени имеют некоторые закономерности. Все выражения по правую сторону равенства состоят из произведения двух многочленов, причем один из них всегда имеет форму х - у (изначальная разность выражений). Второй же образован неким сложным полиномом, количество одночленов которого растет со степенью.

Для выведения общей формулы, которая поможет преобразовать в произведение полиномов разность переменных с любой степенью, важно понять общие тенденции в равенствах начального порядка. Заметим, что второй многочлен в нашем произведении представляет собой сумму попарных произведений двух выражений. Причем степени переменных находятся в обратной взаимосвязи. Чтобы было легче понять эти закономерности, перепишем равенство для разности выражений четвертой степени таким образом:

х 4 - у 4 = (х - у)(х 3 у 0 + х 2 у 1 + х 1 у 2 + х 0 у 3)

Любое число в нулевой степени обязательно равно единице. Поэтому к любой реальной переменной можно смело дописывать конструкцию с нулевой степенью. Помним так же, что любая переменная имеет степень - если она не указана, то равна единице. Эти правила обращения со степенями и позволили представить равенство в более понятном виде.

Обратим внимание, что количество членов в многочлене вторых скобок равно основной степени (которую имеют переменные в разности). По ряду многочлена, степень одного выражения алгебраически убывает, а степень второго - прибывает. При этом крайними точками для степеней являются 0 и старшая степень начальной разности выражений.

Пользуясь этими соображениями, выведем формулу для нахождения разности выражений пятой степени:

х 5 - у 5 = (х - у)(х 4 у 0 + х 3 у 1 + х 2 у 2 + х 1 у 3 + х 0 у 4)

Для начала, мы прописываем первый множитель (х - у) без изменений. Второй же многочлен будет представлять сумму пяти элементов (по старшей степени). Элементы, в свою очередь, образованы произведением переменных с алгебраическим, обратным и взаимосвязанным изменением степеней. В многочлене:

х 4 у 0 + х 3 у 1 + х 2 у 2 + х 1 у 3 + х 0 у 4

х понижает степень с 4 до 0, у повышает с 0 до 4. Для самопроверки полезно знать, что сумма степеней любого одночлена, в данном случае, будет равна все той же старшей степени - 5.

Остается лишь корректно записать формулу, избавившись от нулевых степеней:

х 5 - у 5 = (х - у)(х 4 + х 3 у + х 2 у 2 + ху 3 + у 4)

В общем плане, для любой степени n верно равенство:

(х) n - (у) n = (х - у)((х) n + (х) n-1 у…+х(у) n - 1 + у n)

Универсальная формула для нахождения суммы двух выражений с n-ной разностью выводится через преобразование вида:

х n + у n = х n - (-у n)

Пользуясь формулой для разности выражений, полученной выше, выводим равенство:

х n + у n = х n - (-у n) = (х + у)((х) n-1 - (х) n-2 у…- х(у) n - 2 + у n-1)

В силу того, что квадрат любого выражения ликвидирует его отрицательность, нельзя доступными средствами представить сумму квадратов (или любых четных степеней) переменных как произведение двух многочленов.

Разложение многочлена на множители. Часть 1

Разложение на множители - это универсальный прием, помогающий решить сложные уравнения и неравенства. Первая мысль, которая должна прийти в голову при решении уравнений и неравенств, в которых в правой части стоит ноль - попробовать разложить левую часть на множители.

Перечислим основные способы разложения многочлена на множители :

  • вынесение общего множителя за скобку
  • использование формул сокращенного умножения
  • по формуле разложения на множители квадратного трехчлена
  • способ группировки
  • деление многочлена на двучлен
  • метод неопределенных коэффициентов

В этой статье мы остановимся подробно на первых трех способах, остальные рассмотрим в следующих статьях.

1. Вынесение общего множителя за скобку.

Чтобы вынести за скобку общий множитель надо сначала его найти. Коэффициент общего множителя равен наибольшему общему делителю всех коэффициентов.

Буквенная часть общего множителя равна произведению выражений, входящих в состав каждого слагаемого с наименьшим показателем степени.

Схема вынесения общего множителя выглядит так:

Внимание!
Количество членов в скобках равно количеству слагаемых в исходном выражении. Если одно из слагаемых совпадает с общим множителем, то при его делении на общий множитель, получаем единицу.

Пример 1.

Разложить на множители многочлен:

Вынесем за скобки общий множитель. Для этого сначала его найдем.

1.Находим наибольший общий делитель всех коэффициентов многочлена, т.е. чисел 20, 35 и 15. Он равен 5.

2. Устанавливаем, что переменная содержится во всех слагаемых, причем наименьший из её показателей степени равен 2. Переменная содержится во всех слагаемых, и наименьший из её показателей степени равен 3.

Переменная содержится только во втором слагаемом, поэтому она не входит в состав общего множителя.

Итак, общий множитель равен

3. Выносим за скобки множитель пользуясь схемой, приведенной выше:

Пример 2. Решить уравнение:

Решение. Разложим левую часть уравнения на множители. Вынесем за скобки множитель :

Итак, получили уравнение

Приравняем каждый множитель к нулю:

Получаем - корень первого уравнения.

Корни :

Ответ: -1, 2, 4

2. Разложение на множители с помощью формул сокращенного умножения.

Если количество слагаемых в многочлене, который мы собираемся разложить на множители меньше или равно трех, то мы пытаемся применить формулы сокращенного умножения.

1. Если многочлен представляет собой разность двух слагаемых , то пытаемся применить формулу разности квадратов :

или формулу разности кубов :

Здесь буквы и обозначают число или алгебраическое выражение.

2. Если многочлен представляет собой сумму двух слагаемых, то, возможно, его можно разложить на множители с помощью формулы суммы кубов :

3. Если многочлен состоит из трех слагаемых, то пытаемся применить формулу квадрата суммы :

или формулу квадрата разности :

Или пытаемся разложить на множители по формуле разложения на множители квадратного трехчлена :

Здесь и - корни квадратного уравнения

Пример 3. Разложить на множители выражение:

Решение. Перед нами сумма двух слагаемых. Попытаемся применить формулу суммы кубов. Для этого нужно сначала каждое слагаемое представить в виде куба какого-то выражения, а затем применить формулу для суммы кубов:

Пример 4. Разложить на множители выражение:

Рещение. Перед нами разность квадратов двух выражений. Первое выражение: , второе выражение:

Применим формулу для разности квадратов:

Раскроем скобки и приведем подобные члены, получим:

Loading...Loading...