Поляризация поперечных волн. Поляризация света

В начале XIX века, когда Т.Юнг и О.Френель развивали волновую теорию света, природа световых волн была неизвестна. На первом этапе предполагалось, что свет представляет собой продольные волны, распространяющиеся в некоторой гипотетической среде - эфире . При изучении явлений интерференции и дифракции вопрос о том, являются ли световые волны продольными или поперечными, имел второстепенное значение. В то время казалось невероятным, что свет - это поперечные волны, так как по аналогии с механическими волнами пришлось бы предполагать, что эфир - это твердое тело (поперечные механические волны не могут распространяться в газообразной или жидкой среде).

Однако, постепенно накапливались экспериментальные факты, свидетельствующие в пользу поперечности световых волн. Еще в конце XVII века было обнаружено, что кристалл исландского шпата (CaCO 3) раздваивает проходящие через него лучи. Это явление получило название двойного лучепреломления (рис. 3.11.1).

В 1809 году французский инженер Этьен Малюс открыл закон, названный его именем. В опытах Малюса свет последовательно пропускался через две одинаковые пластинки из турмалина (прозрачное кристаллическое вещество зеленоватой окраски). Пластинки можно было поворачивать друг относительно друга на угол φ (рис. 3.11.2).

Интенсивность прошедшего света оказалась прямо пропорциональной cos 2 φ:

I ~ cos 2 φ.

Ни двойное лучепреломление, ни закон Малюса не могут найти объяснение в рамках теории продольных волн. Для продольных волн направление распространения луча является осью симметрии. В продольной волне все направления в плоскости, перпендикулярной лучу, равноправны. В поперечной волне (например, в волне, бегущей по резиновому жгуту) направление колебаний и перпендикулярное ему направление не равноправны (рис. 3.11.3).

Таким образом, асимметрия относительно направления распространения (луча) является решающим признаком, который отличает поперечную волну от продольной. Впервые догадку о поперечности световых волн высказал в 1816 г. Т.Юнг. Френель, независимо от Юнга, также выдвинул концепцию поперечности световых волн, обосновал ее многочисленными экспериментами и создал теорию двойного лучепреломления света в кристаллах.

В середине 60-х годов XIX века на основании совпадения известного значения скорости света со скоростью распространения электромагнитных волн Максвелл сделал вывод о том, что свет - это электромагнитные волны. К тому времени поперечность световых волн уже была доказано экспериментально. Поэтому Максвелл справедливо полагал, что поперечность электромагнитных волн является еще одним важнейшим доказательством электромагнитной природы света.

Электромагнитная теория света приобрела должную стройность, поскольку исчезла необходимость введения особой среды распространения волн - эфира, который приходилось рассматривать как твердое тело.

В электромагнитной волне вектора и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 2.6.3). Во всех процессах взаимодействия света с веществом основную роль играет электрический вектор поэтому его называют световым вектором . Если при распространении электромагнитной волны световой вектор сохраняет свою ориентацию, такую волну называют линейно поляризованной или плоско поляризованной (термин поляризация волн был введен Малюсом применительно к поперечным механическим волнам). Плоскость, в которой колеблется световой вектор называется плоскостью колебаний (плоскость yz на рис. 2.6.3), а плоскость, в которой совершает колебание магнитный вектор - плоскостью поляризации (плоскость xz на рис. 2.6.3).

Если вдоль одного и того же направления распространяются две монохроматические волны, поляризованные в двух взаимно перпендикулярных плоскостях, то в результате их сложения в общем случае возникает эллиптически поляризованная волна (рис. 3.11.4).

В эллиптически поляризованной волне в любой плоскости P , перпендикулярной направлению распространения волны, конец результирующего вектора за один период светового колебания обегает эллипс, который называется эллипсом поляризации . Форма и размер эллипса поляризации определяются амплитудами a x и a y линейно поляризованных волн и фазовым сдвигом Δφ между ними. Частным случаем эллиптически поляризованной волны является волна с круговой поляризацией (a x = a y , Δφ = ± π / 2).

Рис. 3.11.5 дает представление о пространственной структуре эллиптически поляризованной волны.

Линейно поляризованный свет испускается лазерными источниками. Свет может оказаться поляризованным при отражении или рассеянии. В частности, голубой свет от неба частично или полностью поляризован. Однако, свет, испускаемый обычными источниками (например, солнечный свет, излучение ламп накаливания и т. п.), неполяризован . Свет таких источников в каждый момент состоит из вкладов огромного числа независимо излучающих атомов с различной ориентацией светового вектора в излучаемых этими атомами волнах. Поэтому в результирующей волне вектор беспорядочно изменяет свою ориентацию во времени, так что в среднем все направления колебаний оказываются равноправными. Неполяризованный свет называют также естественным светом .

В каждый момент времени вектор может быть спроектирован на две взаимно перпендикулярные оси (рис. 3.11.6).

Это означает, что любую волну (поляризованную и неполяризованную) можно представить как суперпозицию двух линейно поляризованных во взаимно перпендикулярных направлениях волн: . Но в поляризованной волне обе составляющие E x (t ) и E y (t ) когерентны, а в неполяризованной - некогерентны, т. е. в первом случае разность фаз между E x (t ) и E y (t ) постоянна, а во втором она является случайной функцией времени.

Явление двойного лучепреломления света объясняется тем, что во многих кристаллических веществах показатели преломления волн, линейно поляризованных во взаимно перпендикулярных направлениях, различны. Поэтому кристалл раздваивает проходящие через него лучи (рис. 3.11.1). Два луча на выходе кристалла линейно поляризованы во взаимно перпендикулярных направлениях. Кристаллы, в которых происходит двойное лучепреломление, называются анизотропными .

С помощью разложения вектора на составляющие по осям можно объяснить закон Малюса (рис. 3.11.2).

У многих кристаллов поглощение света сильно зависит от направления электрического вектора в световой волне. Это явление называют дихроизмом . Этим свойством, в частности, обладают пластины турмалина, использованные в опытах Малюса. При определенной толщине пластинка турмалина почти полностью поглощает одну из взаимно перпендикулярно поляризованных волн (например, E x ) и частично пропускает вторую волну (E y ). Направление колебаний электрического вектора в прошедшей волне называется разрешенным направлением пластинки. Пластинка турмалина может быть использована как для получения поляризованного света (поляризатор ), так и для анализа характера поляризации света (анализатор ). В настоящее время широко применяются искусственные дихроичные пленки, которые называются поляроидами . Поляроиды почти полностью пропускают волну разрешенной поляризации и не пропускают волну, поляризованную в перпендикулярном направлении. Таким образом, поляроиды можно считать идеальными поляризационными фильтрами .

Рассмотрим прохождение естественного света последовательно через два идеальных поляроида П 1 и П 2 (рис. 3.11.7), разрешенные направления которых повернуты друг относительно друга на некоторый угол φ. Первый поляроид играет роль поляризатора. Он превращает естественный свет в линейно поляризованный. Второй поляроид служит для анализа падающего на него света.

Если обозначить амплитуду линейно поляризованной волны после прохождения света через первый поляроид через , то волна, пропущенная вторым поляроидом, будет иметь амплитуду E = E 0 cos φ. Следовательно, интенсивность I линейно поляризованной волны на выходе второго поляроида будет равна

Таким образом, в электромагнитной теории света закон Малюса находит естественное объяснение на основе разложения вектора на составляющие.

Весьма важное значение для распространения и приема излучаемых

электромагнитных волн имеет их поляризация (франц. - polarisation; от греч. polos - ось, полюс). Как физическое явление поляризация - ориентация в пространстве электрического и магнитного векторов электромагнитной волны. Обычно поляризацию принято характеризовать ориентацией вектора напряженности электрического поля. Плоскость, в которой лежит этот вектор, называют плоскостью поляризации . Различают линейную (вертикальную и горизонтальную), эллиптическую и круговую поляризацию. В пределах поля тяжести Земли в каналах радиотехнических систем обычно используют вертикальную (вектор поля параллелен силе тяжести) или горизонтальную линейную поляризацию.

Можно достаточно условно объяснить процесс поляризации радиоволны по аналогии с механическими колебаниями натянутой и возбужденной музыкальной струны. Натянутая струна соответствующим возбуждением (отводом ее, например, пальцами) на одном конце приводится в колебательное состояние, представляющим собой механическую волну. Созданная волна распространяется вдоль струны и может быть зарегистрирована на другом ее конце. Такую механическую волну можно упрощенно представить как модель радиоволны (или световой волны), которая движется по пространству от источника электромагнитных колебаний к приемнику (регистратору). Натянутая струна может быть возбуждена по-разному: отклонение струны можно произвести или в вертикальной, или в горизонтальной плоскости. Когда речь идет о радиоволне, излучаемой антенной передающего устройства, то в первом случае можно говорить об аналоге вертикальной , а во втором случае - об аналоге горизонтальной поляризации волны.

Для обычного радиоприемника (стоящего после антенны) на другом конце линии связи это тонкое различие в свойствах потока электромагнитных колебаний не существенно. Приемник не реагирует на плоскость поляризации радиоволны, а регистрирует только ее мощность (в модели это степень отклонения струны); он не различает горизонтальную и вертикальную поляризацию. Однако имеются элементы, которые реагируют на поляризацию электромагнитных колебаний. Их называют поляризационными фильтрами . В случае со струной таким упрощенным аналогом фильтра может служить горизонтальная (для горизонтально колеблющейся струны) или вертикальная (для вертикально колеблющейся струны) прорезь в картоне, поставленном перед человеческим глазом перпендикулярно направлению распространения механической волны. Поляризационный фильтр, поставленный в заданном положении относительно направления распространения электромагнитной волны, становится радиопрозрачным лишь для определенного вида поляризации.


Если горизонтальная и вертикальная компоненты возбуждения волны появляются в определенной временной последовательности, то это приводит к круговой поляризации электромагнитных (или световых) волн. Излучение волн с круговой поляризацией может быть представлено в виде суммы двух волн с линейными поляризациями, ориентированными перпендикулярно друг к другу.

Использование волн с различной поляризацией позволяет передавать сигналы на близких частотах или одной частоте и эффективно разделять их при приеме. Управляя поляризатором дистанционно, можно выбирать сигналы, передаваемые с определенной поляризацией. В основном применяют поляризаторы двух типов: электромагнитные (ферритовые) и механические. Их электрические характеристики приблизительно одинаковы. Отсутствие в электромагнитном поляризаторе движущихся частей предполагает его большую надежность. В то же время механические поляризаторы обладают несколько более низким коэффициентом шума.

При распространении радиоволн вдоль земной поверхности возможно также их отражение от Земли. Аналогично тому, как световые волны отражаются от окружающих предметов, так и излученные радиоволны отражаются от поверхности Земли. Радиоволны, распространяющиеся в непосредственной близости от поверхности Земли, в радиотехнике называют земными или поверхностными волнами (поверхностными лучами). Существенное влияние на распространение радиоволн различных диапазонов оказывает также земная атмосфера (от греч. atmos - пар и sphdira -- шар). Окружающую Землю атмосферу принято делить на три характерных слоя: тропосферу, стратосферу и ионосферу.

Тропосфера (от греч. tropos - поворот) представляет собой нижний слой атмосферы, простирающийся до высот 10...20 км. Тропосфера неоднородна по своим электрическим свойствам, которые определяются атмосферным давлением, температурой и влажностью и меняются при изменении метеоусловий. Кроме того, воздушные течения интенсивно перемешивают газы тропосферы, что приводит к созданию локальных неоднородностей. Все это существенно влияет на распространение радиоволн в тропосфере.

Слой атмосферы, лежащий выше тропосферы и располагающийся на высотах до 50 км, называют стратосферой (от лат. stratum - слой). Плотность газов в ней значительно меньше, чем в тропосфере. С точки зрения электрических свойств стратосфера является практически однородной средой, и волны распространяются в ней прямолинейно со скоростью света и без существенных потерь.

Над стратосферой (высота до 20 000 км) располагается ионосфера (от греч. ion - идущий) - верхние, ионизированные слои атмосферы, которые образуются под воздействием космического излучения и ультрафиолетовых лучей Солнца. В результате ионизации молекул воздуха возникают положительные ионы газа и свободные электроны. Чем больше концентрация свободных электронов, тем сильнее влияют они на распространение радиоволн.

Число свободных электронов, содержащихся в 1 м 3 воздуха атмосферы, называют концентрацией и обозначают N 3 , эл/м 3 . Концентрация электронов в различных слоях ионосферы меняется по высоте. На малых высотах от поверхности Земли она невелика, так как недостаточна энергия ионизации. На больших высотах концентрация свободных электронов невелика вследствие малой плотности газа в атмосфере. На высотах 300...400 км концентрация свободных электронов в ионосфере максимальна. Изменение плотности атмосферы с увеличением расстояния от Земли и сложная зависимость ее температуры от высоты приводят к тому, что в результате ионизации в ионосфере образуются четыре ярко выраженных слоя: D, E, F 1 и F 2 .

Ионосферный слой D расположен на высотах 60...90 км над поверхностью Земли. Слой представляет собой нерегулярное образование ионосферы и практически существует только в дневные часы, когда велика интенсивность солнечного ионизирующего излучения. На высотах 100... 120 км от поверхности Земли находится ионосферный слой Е (слой Кеннелли-Хевисайда). В зависимости от времени года и суток изменяется лишь концентрация свободных электронов в этом слое. Днем слой Е располагается несколько ниже, а ночью - значительно выше, что связано с изменениями уровня солнечного потока. Слои F 1 и F 2 ионосферы занимают области на высотах от 120 до 450 км от поверхности Земли. Обычно их рассматривают как один слой F, имеющий наибольшую концентрацию свободных электронов в ионосфере.

Рис 2.3 - Суточная концентрация электронов в слоях ионосферы

Поляризация волн

Поляриза́ция волн - характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

В продольной волне поляризация возникнуть не может, так как направление колебаний в этом типе волн всегда совпадают с направлением распространения.

Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды , всегда перпендикулярным к волновому вектору. Так что в трёхмерном пространстве имеется ещё одна степень свободы - вращение вокруг волнового вектора.

Причиной возникновения поляризации волн может быть:

  • несимметричная генерация волн в источнике возмущения;
  • анизотропность среды распространения волн;
  • преломление и отражение на границе двух сред.

Основными являются два вида поляризации:

  • линейная - колебания возмущения происходят в какой-то одной плоскости . В таком случае говорят о «плоско-поляризованной волне»;
  • круговая - конец вектора амплитуды описывает окружность в плоскости колебаний. В зависимости от направления вращения вектора может быть правой или левой .

На основе этих двух или только круговой можно сформировать и другие, более сложные виды поляризации. Например, эллиптическая .

Поляризация описывается Фигурами Лиссажу и соответствует сложению поперечных колебаний равной частоты.

Поляризация электромагнитных волн

Теория явления

Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например, поляризованные вертикально и горизонтально. Возможны другие разложения, например, по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.

Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса ). Поляризация фотона является одной из реализаций q-бита .

Линейную поляризацию имеет обычно излучение антенн .

По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.

Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света, прошедшего через поляризаторы, подчиняется закону Малюса . На этом принципе работают жидкокристаллические экраны .

, , , .

Независимыми являются только три из них, ибо справедливо тождество:

.

Если ввести вспомогательный угол , определяемый выражением (знак соответствует левой, а - правой поляризации ), то можно получить следующие выражения для параметров Стокса:

, , .

На основе этих формул можно характеризовать поляризацию световой волны наглядным геометрическим способом. При этом параметры Стокса , , интерпретируются, как декартовы координаты точки, лежащей на поверхности сферы радиуса . Углы и имеют смысл сферических угловых координат этой точки. Такое геометрическое представление предложил Пуанкаре [уточнить ] , поэтому эта сфера называется сферой Пуанкаре . В математике этой модели соответствует сфера Римана , в других разделах физики - сфера Блоха .

Наряду с , , используют также нормированные параметры Стокса , , . Для поляризованного света .

Практическое значение

Картинка справа сделана с использованием поляризационного фильтра

Чаще всего это явление используется для создания различных оптических эффектов, а также в 3D-кинематографе (технология IMAX), где поляризация используется для разделения изображений, предназначенных правому и левому глазу.

Круговая поляризация применяется в антеннах космических линий связи, так как для приёма сигнала не важно положение плоскости поляризации передающей и приёмной антенн. То есть вращение космического аппарата не повлияет на возможность связи с ним. В наземных линиях используют антенны линейной поляризации - всегда можно выбрать заранее - горизонтально или вертикально располагать плоскость поляризации антенн. Антенну круговой поляризации выполнить сложнее, чем антенну линейной поляризации. Вообще, круговая поляризация - вещь теоретическая. На практике говорят об антеннах эллиптической поляризации - с левым или правым направлением вращения.

Круговая поляризация света используется также в технологиях стереокинематографа RealD и MasterImage. Эти технологии подобны IMAX с той разницей, что круговая поляризация вместо линейной позволяет сохранять стереоэффект и избегать двоения изображения при небольших боковых наклонах головы.

Поляризация частиц

Аналогичный эффект наблюдается при квантовомеханическом рассмотрении пучка частиц, обладающих спином . Состояние отдельной частицы в этом случае, вообще говоря, не является чистым и должно описываться соответствующей матрицей плотности . Для частицы со спином ½ (скажем, электрона) это эрмитова матрица 2×2 со следом 1:

В общем случае она имеет вид

Здесь - вектор, составленный из матриц Паули , а - вектор среднего спина частицы. Величина

называется степенью поляризации частицы . Это вещественное число Значение соответствует полностью поляризованному пучку частиц, при этом

Следствием теории Максвелла является поперечность электромагнитных (световых) волн распространяющихся в вакууме или изотропной среде: векторы напряженности электрического и магнитного полей волны взаимно перпендикулярны и колеблются перпендикулярно вектору скорости v распространения волны (то есть перпендикулярно световому лучу). Явление поляризации света служит надежным обоснованием поперечности световой волны. При рассмотрении поляризации обычно все рассуждения связывают с плоскостью колебаний вектора напряженности электрического поля Е - светового вектора , так как химическое, физиологическое и другие виды воздействия света на вещество обусловлены главным образом электрическими колебаниями. Однако при этом следует помнить об обязательном существовании перпендикулярного ему вектора напряженности магнитного поля Н .

Поляризация электромагнитной волны. Записывая решение для электрического поля плоской электромагнитной волны в виде

мы предполагали, что направление вектора амплитуды колебаний не зависит от времени. В этом случае вектор электрического поля всегда и во всех точках волны направлен вдоль одной и той же прямой - колеблется в одной плоскости неизменной ориентации в пространстве.

Плоскость, в которой происходят колебания светового вектора, то есть плоскость, содержащая вектор и направление распространения волны, называется плоскостью колебаний. Если эта плоскость не меняет во времени своей ориентации, то волна называется - линейно (плоско) поляризованной .

Выбирая ось х вдоль направления распространения волны, а ось у - вдоль векторной амплитуды , записываем (6.1) в виде

Однако существует и вторая линейно поляризованная волна, имеющая ту же частоту и распространяющаяся в том же направлении:

Электрические колебания в этой волне направлены вдоль оси z, так что волны (6.2) и (6.3) линейно независимы. Обе они являются решением одного и того же волнового уравнения, так что их суперпозиция также является решением того же уравнения. Сложив эти волны, мы найдем общее выражение для монохроматической волны с данной частотой w , распространяющейся вдоль оси х. Математически эта процедура ничем не отличается от сложения взаимно ортогональных колебаний. Если зафиксировать какую-то точку х и следить за изменением вектора электрического поля в ней, то конец вектора будет описывать эллиптическую , в общем случае, траекторию в плоскости, параллельной y0z. Вращение вектора происходит с частотой волны . В этом случае говорят, что свет имеет эллиптическую поляризацию . Если разность фаз кратна , то эллиптическая поляризация вырождается в линейную . При равенстве амплитуд Е 0,у и Е 0,г эллипс превращается в окружность. Тогда говорят о круговой поляризации волны. В соответствии с двумя возможными направлениями вращения вектора возможны право- и левополяризованные волны . Любую электромагнитную волну можно представить как линейную комбинацию двух линейно поляризованных волн или как линейную комбинацию двух волн с круговой поляризацией. Иными словами, электромагнитные волны имеют две внутренние степени свободы.

Естественный и поляризованный свет. В свете, испускаемом обычными источниками, имеются колебания, совершающиеся в различных направлениях, перпендикулярных к лучу. В таких световых волнах, исходящих из различных элементарных излучателей (атомов), векторы имеют различные ориентации, причем все эти ориентации равновероятны, что обусловлено большим числом атомных излучателей. Такой свет называется естественным , или неполяризованным .

Если под влиянием внешних воздействий на свет или внутренних особенностей источника света (лазер) появляется предпочтительное, наиболее вероятное направление колебаний, то такой свет называется частично поляризованным . Неполяризованный (естественный) свет может испускаться лишь огромным числом элементарных излучателей. Электромагнитная волна от отдельного элементарного излучателя (атома, молекулы) всегда поляризована. С помощью различных поляризаторов из пучка естественного света можно выделить часть, в которой колебания вектора будут происходить в одном определенном направлении в плоскости, перпендикулярной лучу, то есть выделенный свет будет линейно поляризованным.

На рисунках направление колебаний электрического поля линейно поляризованной волны изображается следующим образом. Если вектор Е колеблется в плоскости чертежа, то на направление вектора скорости волны наносится ряд вертикальных стрелочек (рис. 6.1-1), а если в плоскости, перпендикулярной чертежу, - ряд точек (рис. 6.1-2). Естественный (неполяризованный) свет условно обозначается чередующимися черточками, которым соответствует, например, компонента Е y вектора напряженности электрического поля, и точками, соответствующими другой компоненте Е z (рис. 6.1-3).

Рис. 6.1. Условные обозначения типа поляризации волны

Существуют приборы (поляризаторы), пропускающие только колебания, происходящие параллельно некоторой плоскости, называемой плоскостью поляризации прибора, и полностью задерживающие ортогональные колебания. Если пропустить через такой прибор пучок света, то на выходе он будет линейно поляризованным. При вращении прибора вокруг направления луча интенсивность выходящего света будет изменяться от I MAX до I MIN .

Степень поляризации света - это величина

Отметим, что формула (6.4) пригодна для расчета степени поляризации света лишь в том случае, когда частично поляризованный свет представляет собой смесь естественного света и света линейно поляризованного и не работает, например, в случае смеси естественного света и света поляризованного по кругу. В общем случае степень поляризации может быть рассчитана как отношение интенсивности поляризованной компоненты к суммарной интенсивности волны, то есть сумме интенсивностей поляризованной и естественной компонент смеси:

Нетрудно показать, что (6.4) есть частный случай последней формулы.

Если падающий пучок света линейно поляризован, то при положении прибора, когда его плоскость поляризации ортогональна плоскости колебаний волны, свет через прибор не пройдет, то есть . В соответствии с формулой (6.4) степень поляризации такого света . Для частично поляризованного света

и . Для естественного света, где волны разных поляризаций смешаны в равной степени и все направления эквивалентны, интенсивность выходящего света не изменяется при вращении поляризатора, так что и .

Закон Малюса. В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора Е , например природные кристаллы турмалина. Монокристалл турмалина поглощает колебания вектора Е в одном направлении настолько сильно, что сквозь пластинку толщиной порядка 1 мм проходит только линейно поляризованный луч. Кристаллы йодистого хинина еще сильнее поглощают одну из поляризаций: кристаллическая пленка толщиной в десятую долю миллиметра практически полностью отделяет один из линейно поляризованных лучей.

Пусть естественный свет распространяется перпендикулярно плоскости рисунка 6.2.

Рис. 6.2. Разложение вектора амплитуды колебаний А в волне, падающей на поляризатор

Вектор амплитуды колебаний электрического поля волны, совершающихся в плоскости, образующей с плоскостью поляризатора угол , можно разложить на два колебания с амплитудами

Первое колебание с амплитудой А || пройдет через прибор (поляризатор), второе - с амплитудой А - будет задержано (поглощено). Интенсивность прошедшей волны пропорциональна квадрату амплитуды

Падающая волна является смесью волн с различными углами . Усредняя по углам, получаем для интенсивности света на выходе из поляризатора:

где - интенсивность падающего на поляризатор света. В естественном свете все значения угла равновероятны:

так что интенсивность света, прошедшего через поляризатор, будет равна . При вращении поляризатора вокруг направления луча естественного света интенсивность прошедшего света остается неизменной, но изменяется лишь ориентация плоскости колебаний света, выходящего из прибора.

Рассмотрим теперь падение линейно поляризованного света с интенсивностью на тот же поляризатор (рис. 6.3).

Рис. 6.3. Прохождение линейно поляризованной волны через поляризатор

Сквозь прибор пройдет составляющая колебаний с амплитудой

где - угол между плоскостью колебаний вектора Е и плоскостью поляризатора. Следовательно, интенсивность прошедшего света I определяется выражением

которое носит название закона Малюса .

Поляризационные приборы по своему целевому назначению делятся на поляризаторы и анализаторы . Поляризаторы служат для получения поляризованного света. С помощью анализатора можно убедиться, что падающий свет поляризован, и выяснить направление плоскости поляризации. Принципиальных различий в конструкционном отношении между поляризатором и анализатором не существует.

Поставим на пути естественного света два поляризатора, плоскости которых образуют угол (рис. 6.4).


Рис. 6.4. Пропускание естественного света через систему из двух поляризаторов

Из первого поляризатора выйдет линейно поляризованный свет, интенсивность которого , составит половину интенсивности падающего естественного света . Согласно закону Малюса из второго поляризатора (который играет роль анализатора) выйдет свет с интенсивностью

Таким образом, интенсивность света, прошедшего через два поляризатора, равна

Если угол (плоскости поляризации поляризатора и анализатора параллельны), то ; если (анализатор и поляризатор скрещены), то .

Пример 1. В частично поляризованном свете амплитуда колебаний, соответствующая максимальной интенсивности света при прохождении через поляризатор, в n = 2 раза больше амплитуды, соответствующей минимальной интенсивности. Определим степень поляризации света.

Поскольку интенсивность пропорциональна квадрату амплитуды, имеем

Отсюда степень поляризации света равна

Пример 2. На пути света со степенью поляризации Р = 0.6 поставили анализатор так, что интенсивность прошедшего света стала максимальной. Определим, во сколько раз уменьшится интенсивность, если анализатор повернуть на угол ?

В падающем луче по условию (см. предыдущий пример)

При повороте анализатора на угол будут пропущены колебания, параллельные плоскости поляризации прибора. Поэтому интенсивность пропущенных колебаний, прежде бывших параллельными плоскости поляризации, составит

a интенсивность прошедших колебаний, до поворота задерживавшихся анализатором, равна

Суммарная интенсивность прошедших колебаний равна сумме

Стало быть, интенсивность уменьшится при повороте анализатора в 16/13 = 1.23 раза.

Поляризация при отражении и преломлении. Получить поляризованный свет из естественного можно еще одним способом - отражением. Опыт показывает, что отраженный от поверхности диэлектрика и преломленный лучи всегда частично поляризованы. Когда свет падает на диэлектрическую поверхность, то в отраженном луче преобладают колебания, перпендикулярные плоскости падения (точки на рис. 6.5), а в преломленном луче - колебания, параллельные плоскости падения (стрелки на рис. 6.5).

Рис. 6.5. Поляризация света при отражении и преломлении

Степень поляризации зависит от угла падения лучей и от относительного показателя преломления сред. Исследуя это явление, английский физик Д. Брюстер установил, что при определенном значении угла падения

удовлетворяющем условию

отраженный свет полностью поляризован в плоскости, перпендикулярной плоскости падения луча. Это соотношение известно как закон Брюстера. При

отражается только та компонента вектора напряженности электрического поля, которая параллельна поверхности диэлектрика (перпендикулярна плоскости падения). Соответственно, преломленный луч всегда частично поляризован, так как отражается лишь какая-то доля падающего света (не равная 50 %).

При падении света под углом Брюстера отраженный и преломленный лучи взаимно перпендикулярны, отраженный свет полностью поляризован в плоскости, перпендикулярной плоскости падения луча, а преломленный луч частично поляризован с максимальной степенью поляризации.

Для того чтобы объяснить, почему отраженный при падении под углом Брюстера луч линейно поляризован в плоскости, перпендикулярной плоскости падения, учтем, что отраженный свет есть результат излучения вторичных волн колеблющимися под действием светового вектора волны электрическими зарядами (электронами) в среде II . Эти колебания происходят в направлении колебаний вектора Е .

Разложим колебания вектора Е в среде II на два взаимно перпендикулярных направления (см. рис. 6.6): колебания , происходящие в плоскости падения (показаны стрелками), и колебания , происходящие перпендикулярно плоскости падения (показаны точками). В случае падения под углом Брюстера

отраженный луч перпендикулярен преломленному лучу 0С. Следовательно, параллелен . Из электромагнитной теории Максвелла известно, что колеблющийся электрический заряд не излучает электромагнитных волн вдоль направления своего движения. Поэтому колеблющийся в диэлектрике излучатель типа вдоль направления не излучает. Таким образом, по направлению отраженного луча распространяется свет, посылаемый только излучателями типа , направления колебаний которых перпендикулярны плоскости падения.

Следует отметить, что на опыте закон Брюстера не выполняется вполне строго из-за дисперсии света.

Пример 3. Определим, на какой угловой высоте над горизонтом должно находиться Солнце, чтобы солнечный свет, отраженный от поверхности воды, был полностью поляризован.

Демонстрация поляризации волн: шнур от ротора перед щелью колеблется по кругу, а за щелью до точки закрепления - линейно

Поляриза́ция волн - характеристика поперечных волн , описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

Виды поляризации

Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды , всегда перпендикулярным к волновому вектору. Волновой вектор показывает направление распространения волны, а вектор амплитуды показывает, в какую сторону происходят колебания. В трёхмерном пространстве имеется ещё одна степень свободы - возможность вращения вектора амплитуды вокруг волнового вектора.

Причиной возникновения поляризации волн может быть:

  • несимметричная генерация волн в источнике возмущения;
  • анизотропность среды распространения волн;
  • преломление и отражение на границе двух сред.

Теория явления

Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например, поляризованные вертикально и горизонтально. Возможны другие разложения, например, по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.

Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса ). Поляризация фотона является одной из реализаций q-бита .

Линейную поляризацию имеет обычно излучение антенн .

По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.

Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света, прошедшего через поляризаторы, подчиняется закону Малюса . На этом принципе работают жидкокристаллические экраны .

Некоторые живые существа, например пчёлы, способны различать линейную поляризацию света, что даёт им дополнительные возможности для ориентации в пространстве. Обнаружено, что некоторые животные, например рак-богомол , способны различать циркулярно-поляризованный свет, то есть свет с круговой поляризацией. Некоторые люди также обладают способностью различать поляризацию света, в частности, эти люди могут наблюдать невооруженным глазом эффекты, связанные с частичной поляризацией света дневного неба. Так описывает этот эффект Лев Николаевич Толстой в своей повести «Юность»: «и, вглядываясь в растворенную дверь балкона … , и в чистое небо, на котором, как смотришь пристально, вдруг показывается как будто пыльное желтоватое пятнышко и снова исчезает;»

История открытия поляризации электромагнитных волн

Открытию поляризованных световых волн предшествовали работы многих учёных. В 1669 г. датский учёный Расмус Бартолин сообщил о своих опытах с кристаллами известкового шпата (CaCO 3), чаще всего имеющими форму правильного ромбоэдра , которые привозили возвращающиеся из Исландии моряки. Он с удивлением обнаружил, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным). Бартолин провёл тщательные исследования обнаруженного им явления двойного лучепреломления, однако объяснения ему дать не смог.

Через двадцать лет после опытов Э. Бартолина его открытие привлекло внимание нидерландского учёного Христиана Гюйгенса . Он сам начал исследовать свойства кристаллов исландского шпата и дал объяснение явлению двойного лучепреломления на основе своей волновой теории света. При этом он ввёл важное понятие оптической оси кристалла, при вращении вокруг которой отсутствует анизотропия свойств кристалла, то есть их зависимость от направления (конечно, такой осью обладают далеко не все кристаллы).

В своих опытах Гюйгенс пошёл дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны , то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180 градусов вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединёнными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей.

Эти исследования вплотную подвели Гюйгенса к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Для объяснения опытов Х. Гюйгенса И. Ньютон, придерживавшийся корпускулярной теории света, выдвинул идею об отсутствии осевой симметрии светового луча и этим сделал важный шаг к пониманию поляризации света.

{ E x = E 1 cos ⁡ (τ + δ 1) E y = E 2 cos ⁡ (τ + δ 2) E z = 0 {\displaystyle {\begin{cases}E_{x}=E_{1}\cos \left(\tau +\delta _{1}\right)\\E_{y}=E_{2}\cos \left(\tau +\delta _{2}\right)\\E_{z}=0\end{cases}}}

Здесь набег фазы τ = k z − ω t {\displaystyle \tau =kz-\omega t} .

Преобразовав и сложив первые два уравнения, можно получить уравнение движения вектора E → {\displaystyle {\vec {E}}} :

(E x E 1) 2 + (E y E 2) 2 − 2 E x E 1 E y E 2 cos ⁡ (δ) = sin 2 ⁡ δ {\displaystyle \left({\frac {E_{x}}{E_{1}}}\right)^{2}+\left({\frac {E_{y}}{E_{2}}}\right)^{2}-2{\frac {E_{x}}{E_{1}}}{\frac {E_{y}}{E_{2}}}\cos(\delta)=\sin ^{2}{\delta }} , где разность фаз δ = δ 1 − δ 2 {\displaystyle \delta =\delta _{1}-\delta _{2}} .

Наряду с S 1 {\displaystyle S_{1}} , S 2 {\displaystyle S_{2}} , S 3 {\displaystyle S_{3}} используют также нормированные параметры Стокса s 1 = S 1 / S 0 {\displaystyle s_{1}=S_{1}/S_{0}} , s 2 = S 2 / S 0 {\displaystyle s_{2}=S_{2}/S_{0}} , s 3 = S 3 / S 0 {\displaystyle s_{3}=S_{3}/S_{0}} . Для поляризованного света s 1 2 + s 2 2 + s 3 2 = 1 {\displaystyle s_{1}^{2}+s_{2}^{2}+s_{3}^{2}=1} .

s - и p -поляризации волн

В оптике и электродинамике s -поляризованная волна (сравните нем. senkrecht - перпендикулярный) имеет вектор электрического поля E, перпендикулярный плоскости падения. s σ -поляризованной, сагиттально поляризованной, волной E-типа , TE-волной (Transverse Electric ) . p -поляризованная волна (сравните лат. parallel - параллельный) имеет вектор электрического поля E, параллельный плоскости падения. p -поляризованную волну также называют π -поляризованной, поляризованной в плоскости падения, волной H-типа , TM-волной (Transverse Magnetic ) .

Термины TM-волна и TE-волна в работах ряда авторов меняются местами. Дело в том, что классически плоская граница предполагает однородность структуры в двух направлениях. В этом случае определяют плоскость падения и перпендикулярность напряженностей по отношению к ней. Разделение электромагнитного поля на два несвязанных решения возможно в более общем случае структуры, однородной в одном направлении. В этом случае удобно определять перпендикулярность напряжённостей по отношению к направлению однородности . Распространение последнего определения на частный классический случай приводит к тому, что напряженность, перпендикулярная к направлению однородности, оказывается в плоскости падения. Отмечается, что в случае металлической поверхности существенны только волны с электрической напряженностью, перпендикулярной к границе металла . Такие волны также удобнее называть TE-волнами. Термины TM и TE связаны также с обозначением поперечных мод в лазерном резонаторе или волноводе.

В сейсмологии p -волна (от англ. primary - первичный) - продольная волна, приходящая от эпицентра землетрясения первой. s -волна (от англ. secondary - вторичный) - поперечная волна (shear wave), имеющая меньшую скорость распространения, чем продольная, и поэтому приходящая от эпицентра позднее.

Loading...Loading...