Примеры использования резонанса в технике. Резонанс — это физическое явление

Прежде чем приступить к знакомству с явлениями резонанса, следует изучить физические термины, связанные с ним. Их не так много, поэтому запомнить и понять их смысл будет несложно. Итак, обо всем по порядку.

Что такое амплитуда и частота движения?

Представьте обычный двор, где на качелях сидит ребенок и машет ножками, чтобы раскачаться. В момент, когда ему удается раскачать качели и они достигают из одной стороны в другую, можно подсчитать амплитуду и частоту движения.

Амплитуда - это наибольшая длина отклонения от точки, где тело находилось в положении равновесия. Если брать наш пример качелей, то амплитудой можно считать наивысшую точку, до которой раскачался ребенок.

А частота - это количество колебаний или колебательных движений в единицу времени. Измеряется частота в Герцах (1 Гц = 1 колебание в секунду). Возвратимся к нашим качелям: если ребенок проходит за 1 секунду только половину всей длины качания, то его частота будет равна 0,5 Гц.

Как частота связана с явлением резонанса?

Мы уже выяснили, что частота характеризует число колебаний предмета в одну секунду. Представьте теперь, что слабо качающемуся ребенку взрослый человек помогает раскачаться, раз за разом подталкивая качели. При этом данные толчки также имеют свою частоту, которая будет усиливать либо уменьшать амплитуду качания системы "качели-ребенок".

Допустим, взрослый толкает качели в то время, когда они движутся навстречу к нему, в таком случае частота не будет увеличивать амлитуду движения То есть сторонняя сила (в данном случае толчки) не будет способствовать усиления колебания системы.

В случае если частота, с которой взрослый раскачивает ребенка, будет численно равна самой частоте колебания качелей, может возникнуть являение резонанса. Другими словами, пример резонанса - это совпадение частоты самой системы с частотой вынужденных колебаний. Логично представить, что частота и резонанс взаимосвязаны.

Где можно наблюдать пример резонанса?

Важно понимать, что примеры проявления резонанса встречаются практически во всех сферах физики, начиная от звуковых волн и заканчивая электричеством. Смысл резонанса заключается в том, что когда частота вынуждающей силы равна собственной частоте системы, то в этот момент достигает наивысшего значения.

Следующий пример резонанса даст понимание сути. Допустим, вы шагаете по тонкой доске, перекинутой через речку. Когда частота ваших шагов совпадет с частотой или периодом всей системы (доска-человек), то доска начинает сильно колебаться (гнуться вниз и вверх). Если вы продолжите двигаться такими же шагами, то резонанс вызовет сильную амплитуду колебания доски, которая выходит за пределы допустимого значения системы и это в конечном счете приведет к неминуемой поломке мостика.

Существуют также те сферы физики, где можно использовать такое явление, как полезный резонанс. Примеры могут удивить вас, ведь обычно мы используем его интуитивно, даже не догадываясь о научной стороне вопроса. Так, например, мы используем резонанс, когда пытаемся вытащить машину из ямы. Вспомните, ведь легче всего достичь результат только тогда, когда толкаешь машину в момент ее движения вперед. Этот пример резонанса усиливает амплитуду движения, тем самым помогая вытащить машину.

Примеры вредного резонанса

Сложно сказать, какой резонанс в нашей жизни встречается больше: хороший или же наносящий нам вред. Истории известно немалое количество ужасающих последствий явления резонанса. Вот самые известные события, на которых можно наблюдать пример резонанса.

  1. Во Франции, в городе Анжера, в 1750 году отряд солдат шел в ногу через цепной мост. Когда частота их шагов совпала с частотой моста, размахи колебаний (амплитуда) резко увеличились. Наступил резонанс, и цепи оборвались, а мост обрушился в реку.
  2. Бывали случаи, когда в деревнях дом был разрушен из-за проезжающего по главной дороге грузового автомобиля.

Как видите, резонанс может иметь весьма опасные последствия, вот почему инженерам следует тщательно изучать свойства строительных объектов и правильно вычислять их частоты колебаний.

Полезный резонанс

Резонанс не ограничивается только плачевными последствиями. При внимательном изучении окружающего мира можно наблюдать множество хороших и выгодных для человека результатов резонанса. Вот один яркий пример резонанса, позвляющий получать людям эстетическое удовольствие.

Устройсто многих музыкальных инструментов работает по принципу резонанса. Возьмем скрипку: корпус и струна образуют единую колебательную систему, внутри которой имеется штифт. Именно через него передаются частоты колебаний из верхней деки в нижнюю. Когда лютьер водит смычком по струне, то последняя, подобно стреле, побеждает своей трение канифольной поверхности и летит в обратную сторону (начинает движение в противоположную область). Возникает резонанс, который передается в корпус. А внутри его есть специальные отверстия - эфы, сквозь которые резонанс выводится наружу. Именно таким образом он контролируется во многих струнных инструментах (гитара, арфа, виолончель и др).

Вынужденные колебания - колебания, происходящие под воздействием внешних сил, меняющихся во времени.

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Второй закон Ньютона для такого осциллятора запишется в виде: . Если ввести обозначения:и заменить ускорение на вторую производную от координаты по времени, то получим следующее дифференциальное уравнение:

Решением этого уравнения будет сумма общего решения однородного уравнения и частного решения неоднородного. Общее решение однородного уравнения было уже получено здесь и оно имеет вид:

где A ,φ произвольные постоянные, которые определяются из начальных условий.

Найдём частное решение. Для этого подставим в уравнение решение вида: и получим значение для константы:

Тогда окончательное решение запишется в виде:

Резона ì нс (фр. resonance , от лат. resono - откликаюсь) - явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы.

Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс - явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы.

Наиболее известная большинству людей механическая резонансная система - это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле:

где g это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L - длина от точки подвешивания маятника до центра его масс

Резонансные явления могут вызвать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 - разрушился Такомский мост в США. Чтобы предотвратить такие повреждения существует правило, заставляющее строй солдат сбивать шаг при прохождении мостов.

Р
езонансная кривая колебательного контура
Резонансная кривая колебательного контура: w0 - частота собственных колебаний; W - частота вынужденных колебаний; DW - полоса частот вблизи w0, на границах которой амплитуда колебаний V = 0,7 Vmakc. Пунктир - резонансная кривая двух связанных контуров.

26. Основные понятия и исходные положения положения термодинамики. Обратимые и необратимые процессы. Круговые процессы (циклы).

Термодинамика - раздел физики, изучающий соотношения и превращения теплоты и других форм энергии

Перечень начал термодинамики

Первое начало термодинамики представляет собой закон сохранения энергии в применении к термодинамическим системам.(Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил)

ΔU = Q A

Второе начало термодинамики накладывает ограничения на направление термодинамических процессов, запрещая самопроизвольную передачу тепла от менее нагретых тел к более нагретым. Также формулируется как закон возрастания энтропии. dS≥0 (Неравенство Клаузиуса )

Третье начало термодинамики говорит о том, как энтропия ведет себя вблизи абсолютного нуля температур.

Обратимый процесс (то есть равновесный) - термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.

Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Обратимые процессы дают наибольшую работу. Боìльшую работу от системы вообще получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.

Необратимым называется процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы. Примеры необратимых процессов: диффузия, теплопроводность и др.

Термодинами ì ческие ци ì клы - круговые процессы в термодинамике, то есть такие процессы, в которых начальные и конечные параметры, определяющие состояние рабочего тела (давление, объём, температура, энтропия) совпадают.

Термодинамические циклы являются моделями процессов, происходящих в реальных тепловых машинах для превращения тепла в механическую работу. Единственным обратимым циклом для машины, в которой передача тепла осуществляется только между рабочим телом, нагревателем и холодильником, является Цикл Карно. Существуют также другие циклы (например, циклы Стирлинга и Эрикссона), в которых обратимость достигается путём введения дополнительного теплового резервуара - регенератора

Определение понятия резонанса (отклика) в физике возлагается на специальных техников, которые обладают графиками статистики, часто сталкивающихся с этим явлением. На сегодняшний день резонанс представляет собой частотно-избирательный отклик, где вибрационная система или резкое возрастание внешней силы вынуждает другую систему осциллировать с большей амплитудой на определенных частотах.

Принцип действия

Это явление наблюдается , когда система способна хранить и легко переносить энергию между двумя или более разными режимами хранения, такими как кинетическая и потенциальная энергия. Однако есть некоторые потери от цикла к циклу, называемые затуханием. Когда затухание незначительно, резонансная частота приблизительно равна собственной частоте системы, которая представляет собой частоту невынужденных колебаний.

Эти явления происходят со всеми типами колебаний или волн: механические, акустические, электромагнитные, ядерные магнитные (ЯМР), электронные спиновые (ЭПР) и резонанс квантовых волновых функций. Такие системы могут использоваться для генерации вибраций определенной частоты (например, музыкальных инструментов).

Термин «резонанс» (от латинской resonantia, «эхо») происходит от поля акустики, особенно наблюдаемого в музыкальных инструментах, например, когда струны начинают вибрировать и воспроизводить звук без прямого воздействия игроком.

Толчок человека на качелях является распространенным примером этого явления. Загруженные качели, маятник имеют собственную частоту колебаний и резонансную частоту, которая сопротивляется толканию быстрее или медленнее.

Примером является колебание снарядов на детской площадке, которое действует как маятник. Нажатие человека во время качания с естественным интервалом колебания приводит к тому, что качели идут все выше и выше (максимальная амплитуда), в то время как попытки делать качание с более быстрым или медленным темпом создают меньшие дуги. Это связано с тем, что энергия, поглощаемая колебаниями, увеличивается, когда толчки соответствуют естественным колебаниям.

Отклик широко встречается в природе и используется во многих искусственных устройствах. Это механизм, посредством которого генерируются практически все синусоидальные волны и вибрации. Многие звуки, которые мы слышим, например, когда ударяются жесткие предметы из металла, стекла или дерева, вызваны короткими колебаниями в объекте. Легкое и другое коротковолновое электромагнитное излучение создается резонансом в атомном масштабе, таким как электроны в атомах. Другие условия, в которых могут применяться полезные свойства этого явления:

  • Механизмы хронометража современных часов, колесо баланса в механических часах и кварцевый кристалл в часах.
  • Приливной отклик залива Фанди.
  • Акустические резонансы музыкальных инструментов и человеческого голосового тракта.
  • Разрушение хрустального бокала под воздействием музыкального правого тона.
  • Фрикционные идиофоны, такие как изготовление стеклянного предмета (стекла, бутылки, вазы), вибрируют, при потирании вокруг его края кончиком пальца.
  • Электрический отклик настроенных схем в радиостанциях и телевизорах, которые позволяют избирательно принимать радиочастоты.
  • Создание когерентного света оптическим резонансом в лазерной полости.
  • Орбитальный отклик, примером которого являются некоторые луны газовых гигантов Солнечной системы.

Материальные резонансы в атомном масштабе являются основой нескольких спектроскопических методов, которые используются в физике конденсированных сред, например:

  • Электронный спиновой.
  • Эффект Мёссбауэра.
  • Ядерный магнитный.

Типы явления

В описании резонанса Г. Галилей как раз обратил внимание на самое существенное - на способность механической колебательной системы (тяжелого маятника) накапливать энергию, которая подводится от внешнего источника с определенной частотой. Проявления резонанса имеют определенные особенности в различных системах и поэтому выделяют разные его типы.

Механический и акустический

Это тенденция механической системы поглощать больше энергии, когда частота ее колебаний соответствует собственной частоте вибрации системы. Это может привести к сильным колебаниям движения и даже катастрофическому провалу в недостроенных конструкциях, включая мосты, здания, поезда и самолеты. При проектировании объектов инженеры должны обеспечить безопасность, чтобы механические резонансные частоты составных частей не соответствовали колебательным частотам двигателей или других осциллирующих частей во избежание явлений, известных как резонансное бедствие.

Электрический резонанс

Возникает в электрической цепи на определенной резонансной частоте, когда импеданс схемы минимален в последовательной цепи или максимум в параллельном контуре. Резонанс в схемах используется для передачи и приема беспроводной связи, такой как телевидение, сотовая или радиосвязь.

Оптический резонанс

Оптическая полость, также называемая оптическим резонатором, представляет собой особое расположение зеркал, которое образует резонатор стоячей волны для световых волн . Оптические полости являются основным компонентом лазеров, окружающих среду усиления и обеспечивающих обратную связь лазерного излучения. Они также используются в оптических параметрических генераторах и некоторых интерферометрах.

Свет, ограниченный в полости, многократно воспроизводит стоячие волны для определенных резонансных частот. Полученные паттерны стоячей волны называются «режимами». Продольные моды отличаются только частотой, в то время как поперечные различаются для разных частот и имеют разные рисунки интенсивности поперек сечения пучка. Кольцевые резонаторы и шепчущие галереи являются примерами оптических резонаторов, которые не образуют стоячих волн.

Орбитальные колебания

В космической механике возникает орбитальный отклик , когда два орбитальных тела оказывают регулярное, периодическое гравитационное влияние друг на друга. Обычно это происходит из-за того, что их орбитальные периоды связаны отношением двух небольших целых чисел. Орбитальные резонансы значительно усиливают взаимное гравитационное влияние тел. В большинстве случаев это приводит к нестабильному взаимодействию, в котором тела обмениваются импульсом и смещением, пока резонанс больше не существует.

При некоторых обстоятельствах резонансная система может быть устойчивой и самокорректирующей, чтобы тела оставались в резонансе. Примерами является резонанс 1: 2: 4 лун Юпитера Ганимед, Европа и Ио и резонанс 2: 3 между Плутоном и Нептуном. Неустойчивые резонансы с внутренними лунами Сатурна порождают щели в кольцах Сатурна. Частный случай резонанса 1: 1 (между телами с аналогичными орбитальными радиусами) заставляет крупные тела Солнечной системы очищать окрестности вокруг своих орбит, выталкивая почти все остальное вокруг них.

Атомный, частичный и молекулярный

Ядерный магнитный резонанс (ЯМР) - это имя, определяемое физическим резонансным явлением, связанным с наблюдением конкретных квантовомеханических магнитных свойств атомного ядра, если присутствует внешнее магнитное поле. Многие научные методы используют ЯМР-феномены для изучения молекулярной физики, кристаллов и некристаллических материалов. ЯМР также обычно используется в современных медицинских методах визуализации, таких как магнитно-резонансная томография (МРТ).

Польза и вред резонанса

Для того чтобы сделать некий вывод о плюсах и минусах резонанса, необходимо рассмотреть, в каких случаях он может проявляться наиболее активно и заметно для человеческой деятельности.

Положительный эффект

Явление отклика широко используется в науке и технике . Например, работа многих радиотехнических схем и устройств основывается на этом явлении.

Отрицательное воздействие

Однако не всегда явление полезно . Часто можно встретить ссылки на случаи, когда навесные мосты ломались при прохождении по ним солдат «в ногу». При этом ссылаются на проявление резонансного эффекта воздействия резонанса, и борьба с ним приобретает масштабный характер.

Борьба с резонансом

Но несмотря на иногда губительные последствия эффекта отклика с ним вполне можно и нужно бороться. Чтобы избежать нежелательного возникновения этого явления, обычно используют два способа одновременного применения резонанса и борьбы с ним:

  1. Производится «разобщение» частот, которые в случае совпадения приведут к нежелательным последствиям. Для этого повышают трение различных механизмов или меняют собственную частоту колебаний системы.
  2. Увеличивают затухание колебаний, например, ставят двигатель на резиновую подкладку или пружины.

Явления резонанса связаны с периодическим колебательным движением электронов в контуре и состоят в том, что электроны в данном колебательном контуре легче всего «раскачиваются» с какой-то определенной частотой, которую мы называем резонансной. С периодическим колебательным движением мы встречаемся повсеместно. Колебания маятника, дрожание струны, движение качелей - все это примеры колебательного движения.

Для примера рассмотрим колебательную систему, изображенную на рисунке 1. Эта система, как мы увидим дальше, имеет много общего с электрическим колебательным контуром. Состоит она из пружины и массивного шара, закрепленного на стержне.

Рисунок 1. Механическая модель колебательного контура. Масса-индуктивность, гибкость-емкость, трение-сопротивление.

Если мы оттянем шар в низ от положения равновесия, то он под действием пружины немедленно устремится обратно; однако приобретя некоторую скорость шар не остановится в точке равновесия, а по инерции проскочит дальше, чем вызовет новую деформацию (сжатие) пружины. Затем этот процесс повторится в обратном направлении и т. д. Шар будет колебаться в ту и другую сторону до тех пор, пока не израсходуется на трение весь запас энергии, сообщенной пружине при отклонении шара.

Нетрудно заметить, что при колебаниях шара энергия, сообщенная системе, все время переходит из энергии деформации (сжатия и растяжения) пружины в энергию движения шара и обратно. В механике первый вид энергии называется потенциальной энергией, а второй вид - кинетической.

В то время, когда шар находится в одном из крайних положений, он на мгновение останавливается. В этот момент энергия его движения равна нулю. Зато пружина в этот момент очень сильно деформирована: или сжата или растянута; в ней, следовательно, заключено наибольшее количество энергии. В тот же момент, когда шар с наибольшей скоростью проходит через положение равновесия, он обладает наибольшей энергией, но зато энергия пружины в этот момент равна нулю, так как она не сжата и не растянута.

Отклоняя шар на различные расстояния и наблюдая каждый раз за частотой последующих свободных колебаний системы, мы заметим, что частота колебаний системы остается все время одной и той же. Иными словами, она не зависит от величины начального отклонения. Эту частоту мы будем называть собственной частотой колебаний системы.

Если бы мы имели в своем распоряжении не одну такую систему, а несколько, то мы могли бы убедиться в том, что собственная частота свободных колебаний системы уменьшается с увеличением массы шара и увеличивается с увеличением упругости, т. е. с уменьшением гибкости пружины. Эта зависимость может быть обнаружена и на более простом примере с колеблющимися струнами различной толщины и различной степени натяжения.

Если мы пожелаем раскачать шар с наименьшей затратой усилий, то мы, безусловно, постараемся, во-первых, установить строгую периодичность наших толчков, т. е. постараемся, чтобы толчки следовали друг за другом через определенное время, а во-вторых, постараемся, чтобы промежуток времени между толчками равнялся периоду собственных колебаний системы (Рисунок 2).

Рисунок 2. Механическая модель колебательного контура с незатухающими колебаниями. Частота вынужденной силы равна собсвенной частоте системы (резонанс).

Для того чтобы раскачать колебательную систему с наименьшей затратой усилий, нужно частоту вынуждающей силы сделать равной собственной частоте колебания системы. Это правило очень хорошо известно всем нам еще с детского возраста, когда мы его применяли, раскачиваясь на качелях.

Рисунок 3. Явление резонанса на примере качелей.

Итак, когда частота вынуждающей силы совпадает с собственной частотой колебаний системы, амплитуда колебаний становится наибольшей.

Таким образом, необходимо сказать, что совпадение частоты вынуждающей силы с собственной частотой колебаний системы и является резонансом .

За примерами резонанса ходить далеко не нужно. Оконное стекло, дрожащее с определенной частотой каждый раз, когда мимо проезжает трамвай или грузовая машина; дрожание струны музыкального инструмента после того, как мы прикоснулись к соседней струне, настроенной в унисон с первой, и т. п. - все это явления резонанса.

Зарядим конденсатор некоторым количеством электричества (рис.4, а) и замкнем его после этого на катушку индуктивности (рис.4, б). Конденсатор начнет немедленно разряжаться. Через катушку индуктивности потечет разрядный ток, а появление тока в катушке приведет к возникновению магнитного поля вокруг нее. При этом в катушке возникнет ЭДС самоиндукции, которая будет задерживать разряд конденсатора. Когда конденсатор разрядится, то ток в катушке не прекратится, так как он будет теперь поддерживаться ЭДС самоиндукции за счет энергии, запасенной в магнитном поле катушки во время разряда конденсатора. Этот продолжающийся ток перезарядит конденсатор в обратном направлении, т. е. та пластина, которая была прежде положительной, станет отрицательной, и наоборот (рис.4, в).

Рисунок 4. Вверху - электрические, внизу - механические.

После этого конденсатор снова начнет разряжаться, снова перезарядится (рис.4, г, д) и т. д. Колебания тока в контуре будут продолжаться до тех пор, пока вся электрическая энергия, сообщенная контуру при заряде конденсатора, не превратится в тепловую энергию. Это произойдет тем скорее, чем больше активное сопротивление контура.

Итак, разряд конденсатора через катушку индуктивности является колебательным процессом. Во время этого процесса конденсатор несколько раз заряжается и разряжается, энергия поочередно переходит из электрического поля конденсатора в магнитное поле катушки и обратно.

Рисунок 5. Колебания в колебательном контуре.

Колебания тока, имеющие место при этом разряде, носят затухающий характер (рис.6).

Рисунок 6. Затухающие колебания в контуре.

Частота колебаний при выбранных величинах емкости и индуктивности является величиной вполне определенной и называется собственной частотой контура. Собственная частота контура будет тем больше, чем меньше величины емкости и индуктивности контура.

Если в колебательный контур ввести источник переменного тока, частота которого совпадает с собственной частотой контура, то колебания в контуре достигнут наибольшей величины, т. е. будет иметь место явление резонанса.

Между электрическими и механическими колебаниями может быть проведена далеко идущая параллель.

В табл. 1 слева даны электрические величины и явления, а справа аналогичные им величины и явления из области механики применительно к нашей механической модели колебательного контура.

Аналогия электрических и механических величин
Электрические величины Механические величины
Индуктивность колебательного контура Масса шара;
Емкость колебательного контура Гибкость пружин
Активное сопротивление контура Механическое трение
Пластины конденсатора Пружины
Заряд конденсатора Деформация (сжатие и растяжение) пружин
Положительный заряд пластин Сжатие пружины
Отрицательный заряд пластины Растяжение пружины
Сила тока Скорость движения шара
Направление тока Направление движения шара
Электродвижущая сила самоиндукции Сила инерции шара
Амплитуда (наибольшее мгновенное значение тока) Амплитуда (наибольшее отклонение шара от положения равновесия)
Частота (число циклов в секунду) Частота (число колебаний в се¬кунду)
Резонанс (совпадение частоты внешней ЭДС с собственной частотой конура) Резонанс (совпадение частоты толчков вынуждающей силы с собственной частотой колебаний шара)

Различные моменты электрического колебания и соответствующие им моменты колебания нашей механической модели колебательного контура изображены на рис.4.

Федотова Виктория

Цель: Изучить информацию о механическом резонансе, его применением и учете.

Задачи: 1. Собрать и систематизировать информацию о применении и учете механического резонанса в природе, быту и технике.

2. Продемонстрировать опыты по наблюдению механического резонанса.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Механический резонанс

1602 В 4 F тр max

Механический резонанс польза вред

20 января (2 февраля) 1905 года по Египетскому цепному мосту в Санкт - Петербурге проходил эскадрон гвардейской кавалерии

Разрушения Такомского моста в Америке в 1940 году

В 2010 году «танцевал» мост в Волгограде

Резонанс в технике 1. 2. 3. 4.

Иерихонские трубы

Ротовая и носовая полости играют роль резонаторов

Частотомер

Звуковой резонанс

Механический резонанс польза вред П рименяют Учитывают и уменьшают

Предварительный просмотр:

Проект по физике «Механический резонанс»

Цель: Изучить информацию о механическом резонансе, его применением и учете.

Задачи: 1. Собрать и систематизировать информацию о применении и учете механического резонанса в природе, быту и технике.

2. Продемонстрировать опыты по наблюдению механического резонанса.

Каждый из нас любит веселое занятие - раскачивание на качелях. Развлекая себя или ребенка, мы прилагаем силу нужного направления в строго определенный момент. Очень странно выглядел бы человек, который пытается раскачать качели, подталкивая их не вовремя. Почему прикладывая силу не вовремя нельзя раскачать качели? Этот вопрос долго оставался без ответа, пока на уроке физики мы не изучили резонанс. Это явление природы очень загадочно. Мы решили немного приподнять завесу тайны.

Механическим резонансом называют явление резкого возрастания амплитуды колебаний, когда частота вынужденных колебаний совпадает с собственной частотой физической системы. Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн. Наиболее отчетливо резонанс наблюдается, если трение в системе минимально.

Для предотвращения этого явления либо увеличивают трение, либо изменяют параметры самой колебательной системы.

Как любое природное явление, резонанс не может быть однозначно полезным или вредным, он имеет свои плюсы и минусы. Когда он вреден, его учитывают и стараются предотвратить, если полезен – применяют.

Каждая деталь, механизм, машина или постройка имеют собственную частоту колебания. Если они при работе попадают под действие вынуждающей силы, весьма опасными могут быть последствия при совпадении частот.

20 января (2 февраля) 1905 года по Египетскому цепному мосту в Санкт - Петербурге проходил эскадрон гвардейской кавалерии, навстречу ему двигались 11 саней с возницами. В этот момент мост рухнул на лёд Фонтанки. Основная версия заключается в том, что конструкция моста не выдержала слишком ритмичных колебаний от слаженного шага военных, отчего в ней произошел резонанс. Эта версия была включена в школьную программу по физике в качестве наглядного примера, кроме того, была введена новая военная команда «идти не в ногу», она даётся строевой колонне перед выходом на любой мост. Разрушения Такомского моста произошло из-за того же резонанса в Америке в 1940 году, моста в Анжере, во Франции в 1850 году. В 2010 году «танцевал» мост в Волгограде.

Механический резонанс может возникнуть, например, в процессе разгона ротора механизма при какой-то промежуточной частоте вращения; с увеличением частоты резонанс прекращается. Резонанс может возникнуть не во всем механизме, а только в какой-либо его части; при резонансе она может отломиться.

Некоторые летчики-испытатели с ужасом сообщали, что при полете их самолет вдруг начинало сильно трясти, и через несколько минут он буквально рассыпался в воздухе. Расследования таких случаев дали ответ о виновнике аварии: это был резонанс. При работе двигателей совпали частоты их колебаний с собственной частотой колебаний корпуса самолета. Размах колебаний все увеличивался, и самолет просто рассыпался в воздухе. Известны случаи, когда приходилось перестраивать океанские лайнеры, чтобы уменьшить вибрацию. Любое тело имеет свою собственную частоту колебаний. И если суметь подобрать такую же частоту внешней силы, разрушение будет неизбежно. Ярчайшим примером тому служат Иерихонские трубы. По преданию, когда они затрубили, стены Иерихона рухнули. Таким же образом можно разбить стакан. А любители Шрека вспомнили птичку, которая лопнула от пения Фионы Отклик, называемый резонансом, проявляется и так. Вот загудело-завибрировало оконное стекло без каких-либо ударов или других заметных воздействий; а вот при прослушивании негромкой музыки начал откликаться бокал, стоящий в шкафу, причем на одной и той же ноте.

Перенесемся мысленно в древний Рим, где на сцене Колизея игрались различные трагедии. Громадный амфитеатр устроен таким образом, что все присутствующие слышат даже шепотом произнесенное слово на сцене. Здесь работает резонанс. Ведь и современные концертные залы строят по особым законам, создавая условия для резонанса. Да и мы с вами используем его для общения. При говоре или пении мы округляем рот, усиливая звук. Обезьяны-ревуны пользуются этим явлением гораздо лучше нас, их рев разносится на несколько километров. Да и обычные лягушки в брачный период издают достаточно громкие крики. У тех и других есть резонаторный мешок, который они раздувают при вопле. Люди подсмотрели в природе явление резонанса и стали использовать его в своих целях. Многие из нас неоднократно любовались изящными формами музыкальных инструментов, но лишь некоторые задают себе вопрос: «А для чего скрипке нужна такая форма?» И тут все дело в резонансе. Звуки разной высоты резонируют в разных местах причудливо изогнутого инструмента. Все усилители звука имеют размеры, подходящие для резонанса. Стоит только немного их изменить, звук тут же «исчезает». Шум морской раковины тоже порожден резонансом.

На явлении резонанса основано действие прибора, позволяющего измерять частоту колебаний. Этот прибор называется частотомером . Частоту механических колебаний обычно измеряют с помощью вибрационных механических и электрических частотомеров ., используемых совместно с преобразователями механических колебаний в электрические. Простейший вибрационный механический частотомер, действие которого основано на резонансе, представляет собой ряд упругих пластин, укрепленных одним концом на общем основании. Пластины подбирают по длине и массе так, чтобы частоты их собственных колебаний составили некую дискретную шкалу, по которой и определяют значение измеряемой частоты. Механические колебания, воздействующие на основание частотомера , вызывают вибрацию упругих пластин, при этом наибольшая амплитуда колебаний наблюдается у той пластины, у которой частота собственных колебаний равна (или близка по значению) измеряемой частоте.

Опыты по наблюдению резонанса .

  1. Подвесим к веревке, закрепленной в стойках, несколько маятников разной длины. Отклоним маятник A от положения равновесия и предоставим его самому себе. Он будет совершать свободные колебания, действуя с некоторой периодической силой на веревку. Веревка в свою очередь будет действовать на остальные маятники. В результате все маятники начнут совершать вынужденные колебания с частотой колебаний маятника A . Мы увидим, что все маятники начнут колебаться с частотой, равной частоте колебаний маятника A . Однако их амплитуда колебаний, кроме маятника C , будет меньше, чем амплитуда колебаний маятника A . Маятник же C , длина которого равна длине маятника A , будет раскачиваться очень сильно. Следовательно, наибольшую амплитуду колебаний имеет маятник, собственная частота колебаний которого совпадает с частотой вынуждающей силы. В этом случае говорят, что наблюдается резонанс .
  2. Расположим два одинаковых камертона рядом, повернув их друг к другу теми сторонами ящичков, где нет стенок. Ударим левый камертон молоточком. Через секунду заглушим его рукой. Мы услышим, что звучит второй камертон, который мы не ударяли. Говорят, что правый камертон резонирует, то есть улавливает энергию звуковых волн от левого камертона, в результате чего увеличивает амплитуду собственных колебаний.

Вывод: Изучив явление механического резонанса, стало понятно, что это непростое явление. О нем надо помнить и учитывать, так как оно может принести пользу и вред. Если резонанс приносит пользу, то это используют и применяют, а если вред, - то учитывают и уменьшают действие резонанса.

Loading...Loading...