Проект огнезащиты деревянных конструкций пример. Классификация современных методов огнезащита металлоконструкций

СОГЛАСОВАНО:

__________________

__________________

Проект

проведения огнезащитных работ

на объекте _________________________

____________________________________

РАЗРАБОТАНО:

  1. Техническое задание на разработку Проекта проведения огнезащитных работ................................
  2. Пояснительная записка...…………………………………………………… ......

Общие положения...……………………………………………………......

Техническое решение...…………………………………………………

3.Технические характеристики применяемого огнезащитного средства...…....

Описание состава...……………………………………………………......

Показатели огнезащитной эффективности...…………………………

Условия нанесения состава...…………………………………………......

Условия эксплуатации покрытия...……………………………………

Срок эксплуатации покрытия...………………………………………......

Хранение и транспортирование огнезащитного средства...…………

Информация о производителе состава……………………………………

4.Расчетная часть...……………………………………………………………......

Исходные данные...……………………………………………………

Расчеты толщины покрытия и расхода огнезащитного состава...……

5. Порядок выполнения работ по огнезащите...…………………………………

Подготовка огнезащитного средства к нанесению...…………………

Подготовка поверхности металлоконструкций...………………………

Нанесение огнезащитного состава..…………………………………......

Применение покрывного слоя...…………………………………………

6. Контроль качества и обслуживание покрытия...................................................

7. Охрана труда и техника безопасности.................................................................

Приложения.

1. Чертежи объектов огнезащиты.

2. Копия сертификата соответствия на запроектированное огнезащитное средство.

3. Копия токсико-гигиенического паспорта на огнезащитное средство.

4. Копия регламента работ по огнезащите.

5. Копия лицензии разработчика проекта.

ТУ В 24.3-13481691-010:2007

Состав для огнезащитного покрытия «Эндотерм 220206».

Регламент работ по огнезащите. Состав для огнезащитного покрытия «Эндотерм 220206»

Согласовано Государственным департаментом

пожарной безопасности от

ГОСТ 12.1. 004-91

ССБТ. Пожарная безопасность. Общие требования.

ГОСТ 12.3.005-75*

(CT СЭВ 3951-82)

ССБТ. Работы окрасочные. Общие требования безопасности.

ГОСТ 17.2. 1.01-76

Охрана природы. Атмосфера. Классификация выбросов по составу.

ГОСТ 17.2. 3.02-78

Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями.

СНиП 3-4-80*

ДБН В. 1.1 -7- 2002

Пожарная безопасность объектов строительства

Правила по огнезащите.

Утверждены Приказом МЧС Украины 02.07.07 г. №46

Реквизиты разработчика и заказчика Проекта.

Разработчик проекта:

Название организации

Юридический адрес

Номер лицензии

Заказчик проекта:

Название организации

Юридический адрес

Номер лицензии

1. Техническое задание на разработку Проекта проведения огнезащитных работ.

1.1. Наименование организации-заказчика

_________________________________________________________________________

1.2. Наименование и местонахождение объекта выполнения работ

1.3. Основание для выполнения огнезащитных работ

Повышение предела огнестойкости конструкций (здания) в соответствии с

_________________________________________________________________________

_________________________________________________________________________

1.4. Наименование и требуемые пределы огнестойкости конструкций

Наименование

Предел огнестойкости

Площадь конструкций, м 2

Строительные конструкции с нормируемыми пределами огнестойкости (колонны, балки, ригели, плиты перекрытий, рамные конструкции)

Системы вентиляции и противодымной защиты зданий и сооружений

Кабельные коммуникации и кабельные проходки

1.5. Условия эксплуатации огнезащитного покрытия

Воздействие атмосферных условий

помещение закрытого типа, на открытом воздухе, частичное воздействие атмосферных осадков (под навесом)

Влажность окружающей среды

Температурный режим эксплуатации

Наличие агрессивных сред

1.6. Качественная классификация (сертификация) металла (сложность металлоконструкций, вид профиля, доступность для ремонтно-окрасочных работ, состояние металлоконструкций, наличие коррозионных повреждений в виде ржавчины, трещин, сквозных свищей и т.п.)

1.7. Наличие антикоррозионной защиты объекта (информация в лакокрасочных материалах, использовавшиеся при окраске с описанием схемы их применения по нормативно-технической документации).

1.8. Дополнительная информация

_________________________________________________________________________

_________________________________________________________________________

2. Пояснительная записка.

2.1. Общие положения.

Огнезащита объектов - это комплекс противопожарных мероприятий, который основан на использовании материалов, предотвращающих возгорание и препятствующих распространению огня, повышающих огнестойкость строительных конструкций.

К числу объектов, для которых проблема оптимальной огнезащиты имеет особенно большое значение, относятся:

Строительные конструкции с нормируемыми пределами огнестойкости (колонны, балки, ригели, плиты перекрытий, рамные конструкции);
- системы вентиляции и противодымной защиты зданий и сооружений;
- кабельные коммуникации и кабельные проходки;
- резервуары с нефтепродуктами и сжиженными газами и другие элементы нефтегазодобывающего и нефтехимического комплекса.

Для обычных зданий объекты огнезащиты ограничиваются традиционными строительными конструкциями (металл, дерево, железобетон), системами вентиляции и кабельным хозяйством. Методы огнезащиты этой группы сооружений уже хорошо отработаны, закреплены соответствующими нормативными актами и стандартами, существует устоявшаяся испытательная и разрешительная база.

Показателем огнестойкости строительных конструкций является предел огнестойкости: время в минутах от начала огневого воздействия до появления признаков предельных состояний по огнестойкости. Существуют три предельных состояния по огнестойкости: R - потеря несущей способности; I - потеря теплоизолирующей способности; Е - потеря целостности.

Требуемые пределы огнестойкости конструкций регламентированы в ДБН и других строительных нормах и правилах, нормах пожарной безопасности. В зависимости от степени огнестойкости зданий устанавливаются пределы огнестойкости:

для несущих элементов зданий от R 15 (III степень) до R 120 (I степень);

для наружных стен здания от RE 15 (III степень) до RE 30 (I степень);

для перекрытий междуэтажных от REI 15 до REI 60;

для внутренних стен лестничных клеток - от REI 45 до REI 120;

для маршей и площадок лестниц - от R 30 до R 60.

Пассивный метод огнезащиты заключается в применении покрытий облицовочного и теплоизоляционного типа, огнезащитное действие которых заключается в теплофизических свойствах используемого материала защиты.

Реактивный способ состоит в использовании тонкослойных покрытий, которые при действии огня образуют плотный теплоизоляционный слой, предохраняющий конструкцию вот температурного воздействия. Процессы превращения этого типа покрытий сопровождаются целым комплексом эндотермических химических реакций, в ходе которых выделяются вещества, препятствующие горению.

К наиболее распространенным материалам, используемым при пассивной огнезащите, относятся

Конструктивные огнезащитные материалы, так называемые, экраны (плиты, сегменты, скорлупы, кирпичи) на основе негорючих теплоизолирующих и теплопоглощающих материалов - перлита, вермикулита, огнеупорных волокон с наполнителями;

- огнезащитные штукатурные смеси специального состава, которые повышают предел огнестойкости металлических и железобетонных конструкций к 4-х часов.

Реактивные покрытия - тонкослойные интумесцентные системы, действу-ющие во время пожара, представлены двумя основными группами покрытий:

Полифосфатные составы;

Составы на основе терморасширяющегося графита.

Под влиянием пламени или теплового удара интумесцентное покрытие резко увеличивает свой объем у десятки раз с образованием коксового слоя, который имеет низкую теплопроводность и высокую стойкость к действию огня.

Состав «Эндотерм 220206» относится к тонкослойным покрытиям интумесцентного типа и применяется для повышения предела огнестойкости металлических (стальных) конструкций, эксплуатируемых внутри помещений с неагрессивной средой и относительной влажностью воздуха не более 80%.

(перечисление вторых составов, которые будут применяться )

(таблицы с расчетами)

продолжение

http://audignis.com/obrazec_m1.html

Обеспечение пожарной безопасности на промышленных/общественных объектах, а также в жилых зданиях – приоритетная задача. С целью минимизировать пожарную опасность сооружений и повысить огнестойкость металлических конструкций их подвергают дополнительной огнезащитной обработке. Нанесение (монтаж) специальных средств способствует сохранению прочности и жёсткости стройконструкций в условиях пожара.

Проектирование огнезащиты

Разработка индивидуального проекта под конкретный строительный объект даёт возможность организовать надёжную защиту металлических конструкций от огня, обеспечить высокий уровень пожарной безопасности, а также предотвратить возникновение аварийных ситуаций.

Проектирование огнезащиты металлоконструкций выполняют по такому плану:

  • На начальном этапе обязательно проводят предварительное обследование рабочего объекта для точной оценки его состояния.
  • Второй шаг – расчёт пределов огнестойкости незащищённых металлоконструкций с целью определения критических значений температуры для каждого элемента.
  • После этого составляют базовое техническое задание и разрабатывают оптимальное решение по обеспечению огнестойкости с учётом специфики эксплуатации конкретного здания.
  • Дальше следует подбор эффективных средств огнезащиты и расчёт расходных материалов для обработки всей площади объекта.
  • Следующий этап – подготовка документации для утверждения заказчиком.
  • Последний шаг – окончательное оформление и сдача готового проекта.

В процессе разработки проекта огнезащиты кроме конструктивных особенностей сооружений учитывают общепринятые строительные нормы, стандарты безопасности, объективные прочностные характеристики металла в условиях высоких температур. Также немаловажную роль играют персональные предпочтения заказчика и доступный бюджет.

Компания «ПожСтройСервис» предоставляет полный комплекс услуг по организации огнезащиты металлических конструкций, включая:

  • Обследование зданий;
  • Разработку проектов и подготовку рабочей документации;
  • Подбор материалов и спецоборудования;
  • Нанесение/монтаж высокоэффективных средств огнезащиты в соответствии с базовыми техническими требованиями и строительными нормами;
  • Сопровождение предприятий по пожарной безопасности.

Нужно разработать проект огнезащиты промышленной базы или административного здания? Обращайтесь за услугами к нам. Высококвалифицированные специалисты компании быстро и качественно спроектируют, рассчитают и подготовят необходимую техническую документацию, а также детальные инструкции по нанесению защитных спецсредств, применение которых даёт возможность увеличить время огнестойкости металла до 150-200 минут.

Пример проекта огнезащиты металлоконструкций можно скачать в word (doc)

В архиве: Пояснительная, Расчет приведенной толщины металла, необходимой толщины огнезащитного слоя покрытия, защищаемой площади и расхода огнезащитной краски

2 Поведение стальных конструкций в условиях пожара и необходимость их огнезащиты 9

3 Выбор огнезащитных материалов и их характеристики 11

3.1 Техническая характеристика огнезащитной краски НЕОФЛЭЙМ513 и конструктивной огнезащиты ComposiTherm STEEL 11

3.2 Входной контроль краски НЕОФЛЭЙМ513 и конструктивной огнезащиты ComposiTherm STEEL 12

3.3 Оборудование и инструменты 12

3.4 Технология выполнения работ по нанесению огнезащитной краски НЕОФЛЭЙМ513 и конструктивной огнезащиты ComposiTherm STEEL 13

3.5 Контроль качества покрытия производителем 17

3.6 Гарантийный срок эксплуатации покрытия 18

3.7 Проверка огнезащитного покрытия при эксплуатации здания 18

3.8 Техника безопасности 18

4 Расчет приведенной толщины металла, необходимой толщины огнезащитного слоя покрытия, защищаемой площади и расхода огнезащитных материалов 19

5 Порядок получения заключения государственного пожарного надзора о состоянии и качестве огнезащитной обработки 22

6 Список используемых источников

Входной контроль огнезащитной краски НЕОФЛЭЙМ513 и конструктивной огнезащиты ComposiTherm STEEL

Качество материалов гарантируется предприятием-изготовителем при соблюдении условий хранения и транспортировки в соответствии с ТУ 2316-010-29346883-2008 (НЕОФЛЭЙМ513) и ТУ 5769-002-72312159-2012 (ComposiTherm STEEL (CT-S)).

Каждая партия материала сопровождается сертификатом качества продукции, составленным в соответствии с требованиями ГОСТ 9980.1-86 и подписанным ОТК предприятия-изготовителя. Входной контроль по показателю «внешний вид» поступившей краски ведет прораб, мастер или бригадир.

На предприятии-изготовителе функционирует (сертифицированная LRQA) система менеджмента качества, в соответствии с ИСО 9001-2008, что является подтверждением гарантии качества продукции. Копия сертификата СМК представлена в Приложении Б.

Оборудование и инструменты

Для нанесения огнезащитной краски НЕОФЛЭЙМ513 на металлические конструкции необходимо следующее оборудование и инструменты:

Агрегат высокого давления типа «Вагнер» НС-940 (960);

Шпатель;

Малярная кисть, валик;

Толщиномер типа «Константа-5».

Для нанесения конструктивной огнезащиты ComposiTherm STEEL (CT-S) на металлические конструкции необходимо следующее оборудование и инструменты:

Шпатель;

Малярная кисть, валик;

Быстроходная дрель;

Ножницы, сапожный нож, строительный резак;

Толщиномер типа «ГРЕБЕНКА».

Технология выполнения работ по нанесению огнезащитной краски НЕОФЛЭЙМ513 и конструктивной огнезащиты ComposiTherm STEEL

Нанесение материалов производится в соответствии с техническими условиями ТУ 2316-010-29346883-2008 (НЕОФЛЭЙМ513) и ТУ 5769-002-72312159-2012 (ComposiTherm STEEL (CT-S)) и технологической инструкцией ТИ 021-2008 (Приложение Г).

Подготовка поверхностей для огнезащитной краски НЕОФЛЭЙМ513 включает следующие технологические процессы:

Восстановление антикоррозионного покрытия стальных конструкций грунтовкой ГФ-021 или другой, указанной в Технологических инструкциях.

При нанесении огнезащитной краски НЕОФЛЭЙМ513 температура окружающего воздуха должна быть не ниже +5 0С. Не допускается нанесение краски НЕОФЛЭЙМ513 при отрицательных температурах и воздействии атмосферных осадков.

Огнезащитная краска НЕОФЛЭЙМ513 наносится на поверхность стальных конструкций методом безвоздушного распыления, а также вручную послойно малярной кистью.

Таблица 3

Наименование показателя
Давление краски, МПа
19 - 22
Размер форсунки для распыления, дюйм
0015 - 0021
Угол распыла, градус
10 - 60
Расстояние от форсунки до покрываемой поверхности, мм:
при направлении краски вверх,
при направлении краски вниз и горизонтально
В труднодоступных местах
400 - 1000
500 - 1000
не менее 300
Длина шланга ¾”, м:
при работе одного поста
при работе двух постов
не более 60 м

не более 30 м

Продолжительность сушки промежуточных слоев краски НЕОФЛЭЙМ513 не менее 6 часов при температуре 20±2 0С и относительной влажности не более 85%. При снижении температуры и повышении влажности воздуха время сушки увеличивается.

Рисунок 1 - Двутавровая балка с нанесением краски НЕОФЛЭЙМ513 и покрывного состава

Для повышения влагоустойчивости поверх краски возможно нанесение покрывного слоя с цветовым оттенком согласно RAL, указанным генпроектировщиком или заказчиком (см. рисунок 1).

При наличии труднодоступных мест для металлических конструкций дополнительно предусмотреть забивку минераловатными плитами (группа горючести НГ) глубиной не менее 50 мм (см. рисунок 2). После монтажа минераловатных плит на открытую поверхность плит нанести слой огнезащитного покрытия толщиной не менее толщины слоя покрытия на конструкции, указанной в таблице 5.

Рисунок 2 - Огнезащитная обработка металлических конструкций в труднодоступных местах

Подготовка поверхностей для конструктивной огнезащиты ComposiTherm STEEL (CT-S) включает следующие технологические процессы:

Очистка от грязи, ржавчины, окалины, старой краски;

Восстановление антикоррозионного покрытия стальных конструкций грунтовкой ГФ-021;

Приготовление огнеупорной мастики;

Раскрой фольгированных базальтовых матов.

Приготовление огнеупорной мастики осуществляется непосредственно на строительной площадке ручным способом или с помощью быстроходной дрели в емкости. Емкость заполняется компонентом 1 (в жидкой форме), добавляется компонент 2 (порошкообразная форма) в соотношении 1:1 (по массе). Композиция перемешивается в течении 3 - 5 минут до получения однородной массы. Приготовление, нанесение и сушка состава производится при температуре не ниже +3 0С и относительной влажности воздуха не более 80%.

Раскрой базальтовых матов в соответствии с требуемыми размерами производится вручную с помощью ножниц, сапожных ножей или строительных резаков.

Огнеупорная мастика наносится с помощью шпателя, сушится до образования полусухой липкой пленки, затем сверху наклеиваются раскроенные по размерам базальтовые маты встык (см. рисунок 3, 4)

Рисунок 3 - Схема огнезащиты металлических конструкций огнезащитным составом ComposiTherm STEEL (CT-S)

Рисунок 4 - Металлическая конструкция с нанесением конструктивного огнезащитного состава ComposiTherm STEEL (CT-S).

Контроль качества огнезащитного покрытия производителем

В процессе нанесения на основе краски НЕОФЛЭЙМ513 в соответствии с ТУ 2316-010-29346883-2008 представителем фирмы (прорабом), которая проводит работы, контролируется проектная толщина и качество нанесения огнезащитного покрытия.

Внешний вид готового покрытия оценивается визуально. Огнезащитное покрытие на основе огнезащитной краски НЕОФЛЭЙМ513 должно соответствовать V классу в соответствии с ГОСТ 9.032-74. Покрытие, поврежденное при производстве работ, должно быть восстановлено в соответствии с технологическими инструкциями ТИ 021-2008.

Приемка выполненных огнезащитных работ оформляется актом сдачи-приемки работ установленной формы.

Процессе нанесения на основе конструктивной огнезащиты ComposiTherm STEEL (CT-S) в соответствии с ТУ 5769-002-72312159-2012 прорабом контролируется проектная толщина нанесения огнеупорной мастики. Толщина огнеупорной мастики контролируется с помощью толщиномера типа «ГРЕБЕНКА» по сырому слою в момент нанесения до приклеивания базальтового полотна. Контроль толщины сухого слоя мастики не допускается, поскольку не может дать точных данных. Это связано с тем, что при приклеивании огнезащитного мата к мастике часть мастики впитывается в базальтовый материал.

Внешний вид готового покрытия оценивается визуально. Покрытие, поврежденное при производстве работ, должно быть восстановлено в соответствии с технологическим регламентом No 002СТ-2012.

Гарантийный срок эксплуатации огнезащитных покрытий на основе огнезащитной краски НЕОФЛЭЙМ513 в соответствии с ТУ составляет 25 лет.

Проверка покрытия при эксплуатации здания

При эксплуатации здания, не реже 1-го раза в шесть месяцев, представителем службы эксплуатации здания производится проверка всего огнезащитного покрытия внешним осмотром. Результаты проверки заносятся в специальный журнал. При обнаружении дефектов (трещины, изменения цвета, инородные включения, отслоения, вздутия, нарушение целостности покрытия) необходимо произвести ремонт огнезащитного покрытия.

Сталь не горит, но огнестойкость этого конструкционного материала оставляет желать лучшего. Ведь разогретая пламенем пожара металлоконструкция теряет свою жесткость за считанные минуты. И даже 30-миллиметровая плита продержится в огне не дольше 25-27 минут, после чего конструкция обрушится под своим весом и эксплуатационной нагрузкой.

В итоге получается, что действенная огнезащита нужна даже негорючим конструкциям из металла. И эта необходимость отображается в большинстве норм и правил, регламентирующих сооружение подобных объектов. Поэтому в данной статье мы рассмотрим проектирование огнезащиты металлоконструкций, уделяя внимание и расчетному процессу, и реализации подобной технологии.

Чем регламентируются требования к огнезащите металлоконструкций?

Во-первых, здравым смыслом. Ведь огнестойкость стальной балки или фермы соответствует сопротивляемости пожару с течение 25 минут.

Во-вторых, строительными нормами и правилами, которые просто не могли обойти внимание столь незначительную огнестойкость. Поэтому упоминание об огнезащите металлоконструкций есть в СНиП 21-01-97 (Пожарная безопасность), в СНиП 2.09.03-89 (Промышленные строения) и в СНиП 2.08.01-89 (Жилые дома).

В-третьих, государственными нормативами, регламентирующими пределы огнестойкости и классы пожарной опасности – серия ГОСТ 30247 от 1994, 1997, 2002 года и серия ГОСТ 30403 от 1996 и 2012 года.

Как видите: огнезащита – это очень серьезное дело, которое регламентируется целой серией нормативов, регламентов и стандартов.

Как защитить металлоконструкцию от пожара?

В отличие от регламентов и нормативов реальных способов защиты металлоконструкции от огня не очень много. Причем по общим рекомендациям наиболее действенной технологией огнезащиты является формирование экрана, ограждающего конструкцию от деструктивного воздействия пламени.

Ну а сам экран можно сформировать несколькими способами: от банального обкладывания кирпичом или оштукатуривания до распыления по поверхности конструкции огнестойкого протектора.

При этом эффективность экрана определяет толщина слоя огнезащиты, которая зависит от физических характеристик протектора и ожидаемой сопротивляемости пожару. Например, бетонирование металлоконструкции или обкладывание каркаса кирпичом (в четверть) обеспечивает огнестойкость до 120 минут, а термостойкие лакокрасочные покрытия выдерживают пламя в течение 90 минут максимум.

Какова методика расчета параметров огнезащитных покрытий?

Основной параметр огнезащитного покрытия – его толщина – считается по двум методикам: с помощью экспериментальной оценки или посредством расчетов.

При этом экспериментальная методика предполагает оценку стойкости конструкции под действием реального пламени. То есть экспериментальные образцы покрывают протектором, после чего металлоконструкцию поджигают. Далее нужно лишь зафиксировать деформацию и связать эти данные с толщиной покрытия. Ну а после экспериментов все данные вносятся в особые таблицы, по которым можно оценить огнестойкость металлоконструкции, покрытой слоем протектора соответствующей толщины.

Расчетный метод определения толщины огнезащиты увязывает приведенную толщину конструкционного материала (металла) с огнестойкостью металлоконструкции. Причем под термином «приведенная толщина» понимают соотношение площади сечения (она известна из ГОСТ на соответствующий металлопрокат) к обогреваемому периметру (сумма сторон «горящей» конструкции).

Формула вычисления приведенной толщины выглядит следующим образом:

Где S- это площадь сечения, а P – это периметр. Причем все параметры измеряются в сантиметрах.

Зная приведенную толщину металла можно оценить и степень огнестойкости всего строения (по СНИП 2.08.02 – 89) и аналогичный параметр отдельного элемента металлического каркаса (по СНиП 21-01-97).

В финале, по физическим характеристикам протектора, определяется количество слоев, наносимых на конструкцию для достижения требуемой огнестойкости.

Типовые разновидности протекторов

К наиболее распространенным протекторам, повышающим огнестойкость конструкции, относятся следующие составы:

  • Продукты из серии «Айсберг» компании ООО «ХимПарк Норд». Эти составы обеспечивают 3 и 4 класс защиты от огня при толщине покрытия до 1,5 миллиметров.
  • Составы компании НПО «Ассоциация Крилак», поставляемые в серии «Файэфлекс». Они обеспечивают 3 и 4 класс огнезащиты при толщине покрытия от1,5 до 11 миллиметров.
  • Состав «Антигор» компании ЗАО НПП «Спецэнерготехника», выдерживающий до 120 минут пожара (3 класс огнезащиты).
  • Краска ОЗК-45 компании ООО «НПЛ 38080», миллиметровый слой которой гарантирует 4 класс огнезащиты.
  • Краска PROTERMSTEELитальянской компании ITALVISPROTECTS.r.l, обеспечивающая 4 класс огнезащиты при нанесении слоя толщиной от 1,2 миллиметра.
  • Немецкую краску UNITERM, миллиметровый слой которой обеспечивает огнезащиту 4 класса.
  • Французский состав SIGNULAN HOECO, 60-миллиметровый слой которого обеспечивает 1 класс огнезащиты.

Как видите: современная промышленность предлагает множество вариантов протекторов, обеспечивающих огнезащиту и первого и четвертого классов. При этом толщина покрытия может варьироваться от одного до десятка миллиметров. То есть заинтересованный потребитель может выбрать вариант с практически любыми свойствами и эксплуатационными характеристиками.

Доклад руководителя направления "Огнезащита" Анисимова С.Ю. на международной конференции "Огнезащита и пожарная безопасность-2014"

Сегодня задача по защите металлоконструкций от воздействия огня приобретает все большую актуальность. Постоянно повышаются требования к качеству проведения строительно-монтажных работ, ужесточаются меры административной ответственности за нарушение норм пожарной безопасности. Между тем, сегодня в области защиты металлоконструкций от воздействия огня остается нерешенным целый ряд вопросов: несогласованность строительных и пожарных норм, обилие контрафактной продукции на рынке огнезащитных материалов, недобросовестные сертификационные органы и многие другие. Пути решения этих проблем активно обсуждают представители надзорных и экспертных органов и ведущие специалисты компаний-производителей огнезащитных материалов. Однако в силу большого числа злободневных вопросов, некоторые актуальные проблемы отрасли остаются в тени. В частности, отсутствие проекта огнезащиты как обязательной части рабочей документации при проектировании объекта.

На сегодняшний день большинство проектных организаций закладывают в рабочую документацию только требования по степени огнестойкости здания и в редких случаях прописывают огнезащитный материал , соответствующий данным требованиям. Отдельный проект огнезащиты (проект повышения фактического предела огнестойкости металлических конструкций до требуемых значений) отдан на откуп производителям работ. Отсюда возникает несколько проблемных моментов.

Во-первых, проектировщики зданий, выбирая те или иные виды металлоконструкций, не учитывают их приведенную толщину металла (ПТМ), из-за чего впоследствии возникают сложности с обеспечением требуемой степени огнестойкости. Так, например, огнезащитные краски способны обеспечить II степень огнестойкости (90 минут) с ПТМ от 3,4 мм и выше. Проектировщики же зачастую закладывают в проект металлоконструкции с меньшей ПТМ. В этом случае для обеспечения требуемого предела огнестойкости металлоконструкций необходимо применение конструктивной огнезащиты, которая предполагает обетонирование, обкладку кирпичом, оштукатуривание поверхности элементов конструкций и прочее, что значительно утяжеляет конструкции. Между тем, часто такое изменение технологии строительства проектом не предусмотрено.

Во-вторых, нередки случаи включения в проект материалов не соответствующих требованиям конкретных условий по техническим параметрам. К сожалению, многие проектные и монтажные организации не всегда уделяют должного внимания конкретным характеристикам огнезащитных составов. По этой причине в проект, например, могут попасть неатмосферостойкие огнезащитные материалы для обработки открытых конструкций. В дальнейшем это приведет к преждевременному разрушению покрытия, что в конечном итоге не позволит ему выполнить ни огнезащитные, ни антикоррозионные функции.

В-третьих, достаточно часто в проект закладываются материалы (антикоррозионные грунтовки + огнезащитные краски), которые не прошли испытание на совместимость. Вопрос огнезащитной эффективности таких покрытий в случае пожара остается открытым. Ведь, несмотря на отличные защитные характеристики отдельно взятого огнезащитного материала, эффективность его при пожаре будет минимальна, если адгезия на границе грунт - огнезащита не будет соответствовать нормам. Покрытие не выполнит своей главной функции - повышение фактического предела огнестойкости металлических конструкций до требуемых значений. При пожаре огнезащитная краска просто отслоиться от грунтовки.

Кроме того, одной из распространенных ошибок проектировщиков является отсутствие связи между требованиями по антикоррозионной защите и огнезащите. Так, например, в чертежах КМ (конструкции металлические) или в пояснительной записке отдельным пунктом часто можно встретить указание по антикоррозионной защите металлоконструкций, как правило, ГФ-021 + ПФ-115, и только следующим пунктом идут требования по огнезащите. Однако, на практике подрядчик осуществляет все работы пошагово. То есть сначала выполняет работы по нанесению антикоррозионного покрытия, то есть чаще всего наносит ГФ-021 + ПФ-115, а только потом задается вопросом огнезащиты и наносит огнезащитные краски уже после нанесения финишного покрытия. Это в корне неправильно по причине низкой адгезии огнезащитных красок с покрывными эмалями. При нанесении покрытия должна четко соблюдаться последовательность нанесения материалов: грунт – огнезащитная краска – эмаль. В обратном случае ставится под сомнение огнезащитная эффективность покрытия в случае пожара.

Резюмируя вышесказанное, следует отметить, что для применения технически обоснованных решений по огнезащите, учитывая при этом их согласованность с исходным проектом, рекомендуется обращаться к специалистам в данной области. Научно-производственный холдинг «ВМП», имея в своем штате высококвалифицированных специалистов в области проектирования огнезащиты , способен предложить заказчику различные варианты решения вопросов по огнестойкости металлических конструкций. Многолетний опыт работы на рынке позволил холдингу ВМП создать ряд уникальных систем покрытий, способных обеспечить долговременную защиту металлоконструкций не только от воздействия высоких температур, но и от разрушительного влияния коррозии. Специалисты ВМП помогут выбрать правильный огнезащитный состав в зависимости от условий эксплуатации и избежать таких проблем, как несовместимость материалов в покрытии, излишняя нагрузка на металлоконструкции и др.

Результатом научных разработок научно-производственного холдинга «ВМП» стали вспучивающиеся краски, выпускаемые под маркой ПЛАМКОР. Покрытия, получаемые в результате их нанесения, под воздействием высоких температур значительно увеличиваются в объеме и преобразуются в пористый теплоизолирующий слой – пенококс, который защищает металл от перегрева. Таким образом, предел огнестойкости металлоконструкций повышается многократно (до 90 минут), что обеспечивает дополнительное время для локализации пожара и эвакуации людей. Вспучивающиеся огнезащитные краски ПЛАМКОР обладают высокими технологическими характеристиками; просты в использовании, а значит, снижают трудозатраты; не утяжеляют конструкции и подходят для эксплуатации во всех климатических зонах в диапазоне температур от -60 до +45°С; они совместимы с большим количеством грунтовок, подтвержденных огневыми испытаниями, и имеют высокие декоративные характеристики наряду с длительным сроком эксплуатации.

Научно-производственный холдинг «ВМП» выпускает 3 вида огнезащитных красок, способных удовлетворить практически любые требования заказчика. Для огнезащиты объектов, эксплуатирующихся в открытой атмосфере с прямым воздействием климатических осадков или в промышленной атмосфере с высокой степенью загрязненности, ВМП предлагает использовать атмосферостойкую огнезащитную композицию ПЛАМКОР-3 . Срок службы композиции в открытой промышленной атмосфере составляет не менее 10 лет. Для обработки металлоконструкций внутри помещений рекомендуется применять композицию ПЛАМКОР-2 . Для огнезащиты конструкций внутри отапливаемых помещений ВМП предлагает экономичный материал ПЛАМКОР-1 , на водной основе с высокими экологическими характеристиками. ПЛАМКОР-2 и ПЛАМКОР-3 могут наноситься при отрицательной температуре (ПЛАМКОР-2 до -25°С, ПЛАМКОР-3 до -5°С).

Огнезащитные краски ПЛАМКОР сертифицированы на совместимость как с рядом цинкнаполненных грунтовок холдинга ВМП (ЦИНОТАН, ЦИНЭП, ЦВЭС), так и с традиционно используемой грунтовкой ГФ-021. Применение огнезащитных красок совместно с грунтовками производства ВМП позволяет создавать системы покрытий, обеспечивающие долговременную комплексную защиту металлоконструкций от коррозии и огня. Одним из наглядных примеров такой защиты является Ванкорское нефтегазовое месторождение.

Ванкорское нефтегазовое месторождение в Красноярском крае – один из крупнейших объектов, куда поставлялись материалы ВМП. Окраска производилась в 2006-2013 годы. Для максимально долговременной комплексной защиты от коррозии и огня здесь применялась система покрытия, включающая цинкнаполненную грунтовку, огнезащитную вспучивающую композицию и полиуретановую одноупаковочную эмаль: ЦИНОТАН+ПЛАМКОР-2+ПОЛИТОН-УР. Цинкнаполненная грунтовка ЦИНОТАН обеспечивает протекторную защиту стали и исключает возникновение подпленочной коррозии. Полиуретановое покрытие ПОЛИТОН-УР обеспечивают барьерную защиту от климатических воздействий, обладает хорошей адгезией, устойчиво к воздействию неблагоприятных факторов эксплуатации. Эмаль колеруется по каталогу RAL, что позволяет выдержать фирменные цвета в соответствии с требованиями заказчика. Всего на Ванкорском нефтегазовом месторождении покрытиями ВМП защищено более 3,5 млн. м2 поверхностей технологического оборудования и надземных металлоконструкций.

В своей деятельности ВМП осуществляет комплексный подход к ведению проектов, который включает в себя разработку и предоставление технической, технологической, проектной документации, проведение окрасочных работ, техническое сопровождение проекта с выездом инспектора-технолога на объект. Опыт многолетней работы позволяет холдингу ВМП осуществлять проекты в области комплексной защиты объектов «под ключ» и гарантировать качественную защиту конструкций от коррозии и огня по современным мировым стандартам.

Loading...Loading...