Реактивное движение в жизни. Реактивное движение в природе и технике

Реактивное движение в природе».

Выполнила ученица:

10 «А» класса

Каклюгина Екатерина.

Реактивное движение - движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Многие из нас в своей жизни встречались во время купания в море с медузами. Во всяком случае, в Черном море их вполне хватает. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техно изобретений.

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.

Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.

Применение реактивного движения в технике.

В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.

В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты - бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону

Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”. Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.

>>Физика: Реактивное движение

Большое значение закон сохранения импульса имеет для исследования реактивного движения . Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно него, например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила , толкающая тело.
Наблюдать реактивное движение можно очень просто. Надуйте детский резиновый шарик и отпустите его. Шарик стремительно полетит (рис.5.4 ). Движение, правда, будет кратковременным. Реактивная сила действует лишь до тех пор, пока продолжается истечение воздуха . Главная особенность реактивной силы в том, что она возникает в результате взаимодействия частей системы без какого-либо взаимодействия с внешними телами. В нашем примере шарик летит за счет взаимодействия с вытекающей из него струей воздуха. Сила же, сообщающая ускорение пешеходу на земле, пароходу на воде или винтовому самолету в воздухе, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.
Реактивные двигатели . В настоящее время в связи с освоением космического пространства получили широкое распространение реактивные двигатели . Применяются они также в метеорологических и военных ракетах различного радиуса действия. Все современные скоростные самолеты оснащены реактивными двигателями.
В космическом пространстве использовать какие-либо другие двигатели, кроме реактивных, невозможно, так как там нет опоры (твердой, жидкой или газообразной), отталкиваясь от которой космический корабль мог бы получать ускорение. Применение же реактивных двигателей в самолетах и ракетах, не выходящих за пределы атмосферы, связано с тем, что именно реактивные двигатели способны обеспечить необходимую скорость полета.
Реактивные двигатели делятся на два основных класса: ракетные и воздушно-реактивные.
В ракетных двигателях горючее и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках. На рисунке 5.5 показана схема ракетного двигателя на твердом топливе.

Порох или какое-либо другое топливо, содержащее и горючее, и окислитель , помешают внутрь камеры сгорания двигателя. При сгорании топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Газы вырываются из сопла ракеты с большой скоростью, в результате чего, в соответствии с законом сохранения импульса, ракета приобретает скорость в противоположном направлении. Импульс системы ракета - продукты сгорания остается равным нулю. Так как масса ракеты уменьшается, то даже при постоянной скорости истечения газов ее скорость будет увеличиваться, постепенно достигая максимального значения.
Сужение камеры сгорания (сопла) приводит к увеличению скорости истечения продуктов сгорания, так как через меньшее поперечное сечение в единицу времени должен пройти газ той же массы, что и через большее поперечное сечение. Движение ракеты - это пример движения тела с переменной массой. Для расчета ее скорости используют не второй закон Ньютона, а закон сохранения импульса.
Применяются также ракетные двигатели, работающие на жидком топливе. В жидкостно-реактивных двигателях (ЖРД) в качестве горючего можно использовать керосин, бензин, спирт, анилин, жидкий водород и др., а в качестве окислителя, необходимого для горения, - жидкий кислород , азотную кислоту, жидкий фтор, перекись водорода и др. Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания, где температура повышается до 3000 °С, а давление - до 50 атм (рис.5.6 ). В остальном двигатель работает так же, как и двигатель на твердом топливе.

Жидкостно-реактивные двигатели используются для запуска космических кораблей.
Воздушно-реактивные двигатели в настоящее время применяют главным образом в самолетах. Основное их отличие от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы .
Реактивными двигателями оснащены не только ракеты, но и большая часть современных самолетов.

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

У многих людей само понятие «реактивного движения» крепко ассоциируется с современными достижениями науки и техники, в особенности физики, а в голове появляются образы реактивных самолетов или даже космических кораблей, летающих на сверхзвуковых скоростях с помощью пресловутых реактивных двигателей. На самом же деле явление реактивного движения намного более древнее, чем даже сам человек, ведь оно появилось задолго до нас, людей. Да, реактивное движение активно представлено в природе: медузы, каракатицы вот уже миллионы лет плавают в морских пучинах по тому же самому принципу, по которому сегодня летают современные сверхзвуковые реактивные самолеты.

История реактивного движения

С древних времен различные ученые наблюдали явления реактивного движения в природе, так раньше всех о нем писал древнегреческий математик и механик Герон, правда, дальше теории он так и не зашел.

Если же говорить о практическом применении реактивного движения, то первыми здесь были изобретательные китайцы. Примерно в XIII веке они догадались позаимствовать принцип движения осьминогов и каракатиц при изобретении первых ракет, которые они начали использовать, как для фейерверков, так и для боевых действий (в качестве боевого и сигнального оружия). Чуть позднее это полезное изобретение китайцев переняли арабы, а от них уже и европейцы.

Разумеется, первые условно реактивные ракеты имели сравнительно примитивную конструкцию и на протяжении нескольких веков они практически никак не развивались, казалось, что история развития реактивного движения замерла. Прорыв в этом деле произошел только в XIX веке.

Кто открыл реактивное движение?

Пожалуй, лавры первооткрывателя реактивного движения в «новом времени» можно присудить Николаю Кибальчичу, не только талантливому российскому изобретателю, но и по совместительству революционеру-народовольцу. Свой проект реактивного двигателя и летательного аппарата для людей он создал сидя в царской тюрьме. Позднее Кибальчич был казнен за свою революционную деятельность, а его проект так и остался пылиться на полках в архивах царской охранки.

Позднее работы Кибальчича в этом направлении были открыты и дополнены трудами еще одного талантливого ученого К. Э. Циолковского. С 1903 по 1914 год им было опубликовано ряд работ, в которых убедительно доказывалась возможность использования реактивного движения при создании космических кораблей для исследования космического пространство. Им же был сформирован принцип использования многоступенчатых ракет. И по сей день многие идеи Циолковского применяются в ракетостроении.

Примеры реактивного движения в природе

Наверняка купаясь в море, Вы видели медуз, но вряд ли задумывались, что передвигаются эти удивительные (и к тому же медлительные) существа как раз таки с благодаря реактивному движению. А именно с помощью сокращения своего прозрачного купола они выдавливают воду, которая служит своего рода «реактивных двигателем» медуз.

Похожий механизм движения имеет и каракатица – через особую воронку впереди тела и через боковую щель она набирает воду в свою жаберную полость, а затем энергично выбрасывает ее через воронку, направленную взад либо в бок (в зависимости от направления движения нужного каракатице).

Но самый интересный реактивный двигатель созданный природой имеется у кальмаров, которых вполне справедливо можно назвать «живыми торпедами». Ведь даже тело этих животных по своей форме напоминает ракету, хотя по правде все как раз с точностью наоборот – это ракета своей конструкцией копирует тело кальмара.

Если кальмару необходимо совершить быстрый бросок, он использует свой природный реактивный двигатель. Тело его окружено мантией, особой мышечной тканью и половина объема всего кальмара приходится на мантийную полость, в которую тот всасывает воду. Потом он резко выбрасывает набранную струю воды через узкое сопло, при этом складывая все свои десть щупалец над головой таким образом, чтобы приобрести обтекаемую форму. Благодаря столь совершенной реактивной навигации кальмары могут достигать впечатляющей скорости – 60-70 км в час.

Среди обладателей реактивного двигателя в природе есть и растения, а именно так званный «бешеный огурец». Когда его плоды созревают, в ответ на самое легкое прикосновение он выстреливает клейковиной с семенами

Закон реактивного движения

Кальмары, «бешеные огурцы», медузы и прочие каракатицы издревле пользуются реактивным движением, не задумываясь о его физической сути, мы же попробуем разобрать, в чем суть реактивного движения, какое движение называют реактивным, дать ему определение.

Для начала можно прибегнуть к простому опыту – если обычный воздушный шарик надуть воздухом и, не завязывая отпустить в полет, он будет стремительно лететь, пока у него не израсходуется запас воздуха. Такое явление поясняет третий закон Ньютона, говорящий, что два тела взаимодействуют с силами равными по величине и противоположными по направлению.

То есть сила воздействия шарика на вырывающиеся из него потоки воздуха равна силе, которой воздух отталкивает от себя шарик. По схожему с шариком принципу работает и ракета, которая на огромной скорости выбрасывает часть своей массы, при этом получая сильное ускорение в противоположном направлении.

Закон сохранения импульса и реактивное движение

Физика поясняет процесс реактивного движения . Импульс это произведение массы тела на его скорость (mv). Когда ракета находится в состоянии покоя ее импульс и скорость равны нулю. Когда же из нее начинает выбрасываться реактивная струя, то остальная часть согласно закону сохранения импульса, должна приобрести такую скорость, при которой суммарный импульс будет по прежнему равен нулю.

Формула реактивного движения

В целом реактивное движение можно описать следующей формулой:
m s v s +m р v р =0
m s v s =-m р v р

где m s v s импульс создаваемой струей газов, m р v р импульс, полученный ракетой.

Знак минус показывает, что направление движения ракеты и сила реактивного движения струи противоположны.

Реактивное движение в технике – принцип работы реактивного двигателя

В современной технике реактивное движение играет очень важную роль, так реактивные двигатели приводят в движение самолеты, космические корабли. Само устройство реактивного двигателя может отличаться в зависимости от его размера и назначения. Но так или иначе в каждом из них есть

  • запас топлива,
  • камера, для сгорания топлива,
  • сопло, задача которого ускорять реактивную струю.

Так выглядит реактивный двигатель.

Реактивное движение, видео

И в завершение занимательное видео о физических экспериментах с реактивным движением.

Принцип реактивного движения заключается в том, что этот вид движения возникает тогда, когда происходит отделение с некоторой скоростью, от тела его части. Классическим примером реактивного движения служит движение ракеты. К особенностям данного движения можно отнести то, что тело получает ускорение без взаимодействия с другими телами. Так, движение ракеты происходит за счет изменения ее массы. Масса ракеты уменьшается при истечении газов, которые возникают при сгорании топлива. Рассмотри движение ракеты. Допустим, что масса ракеты равна , а ее скорость в момент времени . Спустя время масса ракеты уменьшается на величину и становится равна: , скорость ракеты становится равной .

Тогда изменение импульса за время можно представить как:

где — скорость истечения газов по отношению к ракете. Если принять, что — величина малая высшего порядка в сравнении с остальными, то получим:

При действии на систему внешних сил () изменение импульса представим как:

Приравниваем правые части формул (2) и (3), получаем:

где выражение — носит название реактивной силы. При этом, если направления векторов и противоположны, то ракета ускоряется, в противном случае она тормозит. Уравнение (4) носит название уравнения движения тела переменной массы. Его часто записывают в виде (уравнение И.В. Мещерского):

Идея использования реактивной силы была предложена еще в XIX веке. Позднее К.Э. Циолковский выдвинул теорию движения ракеты и сформулировал основы теории жидкостного реактивного двигателя. Если положить, что на ракету не действуют внешние силы, то формула (4) получит вид:

Сегодня реактивное движение у большинства людей в первую очередь, конечно же, ассоциируется с новейшими научными и техническими разработками. Из учебников по физике нам известно, что под «реактивным» подразумевают движение, которое возникает в результате отделения от предмета (тела) любой его части. Человек хотел подняться в небо к звёздам, стремился летать, но осуществить свою мечту смог только с появлением реактивных самолетов и ступенчатых космических кораблей, способных перемещаться на огромные расстояния, разгоняясь до сверхзвуковых скоростей, благодаря установленным на них современным реактивным двигателям. Конструктора и инженеры разрабатывали возможность использования реактивного движения в двигателях. Фантасты тоже не оставались в стороне, предлагая самые невероятные идеи и способы достижения этой цели. Удивительно, но этот принцип перемещения широко распространен в живой природе. Достаточно осмотреться вокруг, можно заметить обитателей морей и суши, среди которых есть и растения, в основе движения которых лежит реактивный принцип.

История

Еще в античные времена ученые с интересом изучали и анализировали явления, связанные с реактивным движением в природе. Одним из первых, кто теоретически обосновал и описал его суть, был Герон, механик и теоретик Древней Греции, который изобрел первый паровой двигатель, названый в честь него. Китайцы смогли найти реактивному методу практическое применение. Они первыми, взяв за основу способ передвижения каракатиц и осьминогов, еще в XIII веке изобрели ракеты. Они применялись в фейерверках, производя большое впечатление, а также, как сигнальные ракеты, возможно были и боевые ракеты, которые использовались как реактивная артилерия. Со временем эта технология пришла и в Европу.

Первооткрывателем нового времени стал Н. Кибальчич, придумав схему прототипа летательного аппарата с реактивным двигателем. Он был выдающимся изобретателем и убежденным революционером, за что сидел в тюрьме. Именно находясь в заключении, он вошел в историю, создав свой проект. После его казни за активную революционную деятельность и выступления против монархии, его изобретение было забыто на архивных полках. Спустя некоторое время К.Циолковский смог усовершенствовать идеи Кибальчича, доказывая возможность исследовать космическое пространство посредством реактивного перемещения космических кораблей.

Позже, в ходе Великой Отечественной войны, появились знаменитые Катюши, системы полевой реактивной артиллерии. Так ласковым именем народ неофициально именовал мощные установки, которые применяли силы СССР. Достоверно неизвестно, в связи с чем, оружие получило это название. Причиной этому стала то ли популярность песни Блантера, то ли буква «К» на корпусе миномёта. Со временем фронтовики стали давать прозвища и другому оружию, создав, таким образом, новую традицию. Немцы же эту боевую ракетную установку называли «сталинским органом» за внешний вид, который напоминал музыкальный инструмент и пронзительный звук, который исходил от стартующих ракет.

Растительный мир

Представителями фауны также используются законы реактивного движения. Большую часть растений, обладающих такими свойствами составляют однолетники и малолетники: колючеплодник, чесночница черешчатая, сердечник недотрога, пикульник двунадрезный, мёрингия трёхжилковая.

Колючеплодник, иначе бешеный огурец, относят к семейству тыквенных. Это растение достигает больших размеров, имеет толстый корень с шершавым стеблем и крупными листьями. Произрастает на территории Средней Азии, Средиземноморья, на Кавказе, довольно распространен на юге России и Украины. Внутри плода в период созревания семян преобразуется в слизь, которая под действием температур начинает бродить и выделять газ. Ближе к созреванию давление внутри плода может достигнуть 8 атмосфер. Тогда при легком прикосновении плод отрывается от основания и семена с жидкостью со скоростью 10 м/с вылетают из плода. Благодаря способности стрелять на 12 м. в длину, растение назвали «дамский пистолет».

Сердечник недотрога — однолетний широко распространённый вид. Встречается, как правило, в тенистых лесах, по берегам вдоль рек. Попав в северо-восточную часть Северной Америки и в Южную Африку, благополучно прижился. Сердечник-недотрога размножается семенами. Семена у сердечника-недотроги мелкие, массой не более 5 мг, которые отбрасываются на расстояние в 90 см. Благодаря такому способу распространения семян, растение и получило свое название.

Животный мир

Реактивное движение — интересные факты, касающиеся животного мира. У головоногих моллюсков реактивное перемещение происходит посредством воды, выдыхаемой через сифон, который обычно сужается к небольшому отверстию для получения максимальной скорости выдоха. Вода через жабры проходит до выдоха, выполняя двойную цель дыхания и перемещения. Морские зайцы, иначе брюхоногие моллюски, используют аналогичные средства движения, но без сложного неврологического аппарата головоногих, они перемещаются более неуклюже.

Некоторые рыбы-рыцари также развили реактивное перемещение, пропуская воду через жабры, чтобы дополнить плавниковое движение.

У личинок стрекоз реактивная сила достигается путем вытеснения воды из специализированной полости в организме. Морские гребешки и кардиды, сифонофоры, туники (такие, как сальпы) и некоторые медузы, также используют реактивную тягу.

Большую часть времени морские гребешки спокойно лежат на дне, но в случае появления опасности, быстро смыкают створки своей раковины, так они выталкивают воду. Этот механизм поведения тоже говорит об использовании принципа реактивного перемещения. Благодаря ему, гребешки могут всплывать и перемещаться на большое расстояние, применяя технику открытия-закрытия раковины.

Кальмар также применяет этот метод, вбирает в себя воду, а затем с огромной силой проталкивая через воронку движется скоростью не менее 70 км./ч. Собирая щупальцы в один узел, тело кальмара образует обтекаемую форму. Взяв за основу такой двигатель кальмара, инженерами был сконструирован водомет. Вода в нем засасывается в камеру, а после выбрасывается через сопло. Таким образом, судно направляется в обратную сторону от выбрасываемой струи.

Если сравнить с кальмарами, наиболее эффективными двигателями пользуются сальпы, тратя на порядок меньше энергии, чем кальмары. Двигаясь сальпа запускает воду в отверстие спереди, а затем поступает в широкую полость, где натянуты жабры. После глотка отверстие закрывается, а с помощью сокращающихся продольных и поперечных мускул, которые сжимают тело, происходит выброс воды через отверстие сзади.

Самым необычным из всех механизмов передвижения может похвастаться обыкновенная кошка. Марсель Депре высказал предположение, что тело способно двигаться и изменять свое положение даже с помощью одних только внутренних сил (ни от чего не отталкиваясь и ни на что не опираясь), из чего можно было сделать вывод, что законы Ньютона могут быть ошибочны. Доказательством его предположению могла послужить кошка, которая сорвалась с высоты. Во время падения вниз головой, она все равно приземлится на все лапы, это стало уже своего рода аксиомой. Детально сфотографировав перемещение кошки, смогли по кадрам рассмотреть, все, что она проделывала в воздухе. Увидели ее движение лапой, которое вызвало ответную реакцию туловища, поворачиваясь в другую сторону относительно движения лапки. Действуя по законам Ньютона, кошка удачно приземлилась.

У животных все происходит на уровне инстинкта, человек в свою очередь делает сознательно. Профессиональные пловцы, прыгнув с вышки успевают трижды обернуться в воздухе, и сумев приостановить вращение, выпрямляются строго вертикально и ныряют в воду. Этот же принцип действует в отношении воздушных цирковых гимнастов.

Сколько бы человек не пытался превзойти природу, совершенствуя созданные ею изобретения, все равно мы пока не достигли того технологического совершенства, когда бы самолеты могли повторить действия стрекозы: зависать в воздухе, мгновенно подаваться назад или двигаться в сторону. Причем все это происходит на большой скорости. Возможно, пройдет еще немного времени и самолеты, благодаря поправкам на особенности аэродинамики и реактивные возможности стрекоз, смогут совершать крутые развороты и станут менее восприимчивы к внешним условиям. Подсмотрев у природы, человек еще многое может усовершенствовать на благо технического прогресса.

Loading...Loading...