Степенные или показательные уравнения. Решение показательных уравнений по математике

Показательными называются уравнения, в которых неизвестное содержится в показателе степени. Простейшее показательное уравнение имеет вид: а х = а b , где а> 0, а 1, х - неизвестное.

Основные свойства степеней, при помощи которых преобразуются показательные уравнения: а>0, b>0.

При решении показательных уравнений пользуются также следующими свойствами показательной функции: y = a x , a > 0, a1:

Для представления числа в виде степени используют основное логарифмическое тождество: b = , a > 0, a1, b > 0.

Задачи и тесты по теме "Показательные уравнения"

  • Показательные уравнения

    Уроков: 4 Заданий: 21 Тестов: 1

  • Показательные уравнения - Важные темы для повторения ЕГЭ по математике

    Заданий: 14

  • Системы показательных и логарифмических уравнений - Показательная и логарифмическая функции 11 класс

    Уроков: 1 Заданий: 15 Тестов: 1

  • §2.1. Решение показательных уравнений

    Уроков: 1 Заданий: 27

  • §7 Показательные и логарифмические уравнения и неравенства - Раздел 5. Показательная и логарифмическая функции 10 класс

    Уроков: 1 Заданий: 17

Для успешного решения показательных уравнений Вы должны знать основные свойства степеней, свойства показательной функции, основное логарифмическое тождество.

При решении показательных уравнений используют два основных метода:

  1. переход от уравнения a f(x) = a g(x) к уравнению f(x) = g(x);
  2. введение новых прямых.

Примеры.

1. Уравнения, сводящиеся к простейшим. Решаются приведением обеих частей уравнения к степени с одинаковым основанием.

3 x = 9 x – 2 .

Решение:

3 x = (3 2) x – 2 ;
3 x = 3 2x – 4 ;
x = 2x –4;
x = 4.

Ответ: 4.

2. Уравнения, решаемые с помощью вынесения за скобки общего множителя.

Решение:

3 x – 3 x – 2 = 24
3 x – 2 (3 2 – 1) = 24
3 x – 2 × 8 = 24
3 x – 2 = 3
x – 2 = 1
x = 3.

Ответ: 3.

3. Уравнения, решаемые с помощью замены переменной.

Решение:

2 2x + 2 x – 12 = 0
Обозначаем 2 x = у.
y 2 + y – 12 = 0
y 1 = - 4; y 2 = 3.
a) 2 x = - 4.Уравнение не имеет решений, т.к. 2 х > 0.
б) 2 x = 3; 2 x = 2 log 2 3 ; x = log 2 3.

Ответ: log 2 3.

4. Уравнения, содержащие степени с двумя различными (не сводящимися друг к другу) основаниями.

3 × 2 х + 1 - 2 × 5 х – 2 = 5 х + 2 х – 2 .

3× 2 х + 1 – 2 х – 2 = 5 х – 2 × 5 х – 2
2 х – 2 ×23 = 5 х – 2
×23
2 х – 2 = 5 х – 2
(5/2) х– 2 = 1
х – 2 = 0
х = 2.

Ответ: 2.

5. Уравнения, однородные относительно a x и b x .

Общий вид: .

9 x + 4 x = 2,5 × 6 x .

Решение:

3 2x – 2,5 × 2 x × 3 x +2 2x = 0 |: 2 2x > 0
(3/2) 2x – 2,5 × (3/2) x + 1 = 0.
Обозначим (3/2) x = y.
y 2 – 2,5y + 1 = 0,
y 1 = 2; y 2 = ½.

Ответ: log 3/2 2; - log 3/2 2.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Степенные или показательные уравнения называют уравнения, в которых переменные находятся в степенях, а основанием является число. Например:

Решение показательного уравнения сводится к 2 довольно простым действиям:

1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания неодинаковые, ищем варианты для решения данного примера.

2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Допустим, дано показательное уравнение следующего вида:

Начинать решение данного уравнения стоит с анализа основания. Основаниея разные - 2 и 4, а для решения нам нужно, чтобы были одинаковые, поэтому преобразуем 4 по такой формуле -\[ (a^n)^m = a^{nm}:\]

Прибавляем к исходному уравнению:

Вынесем за скобки \

Выразим \

Поскольку степени одинаковые, отбрасываем их:

Ответ: \

Где можно решить показательное уравнение онлайн решателем?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

На этапе подготовки к заключительному тестированию учащимся старших классов необходимо подтянуть знания по теме «Показательные уравнения». Опыт прошлых лет свидетельствует о том, что подобные задания вызывают у школьников определенные затруднения. Поэтому старшеклассникам, независимо от уровня их подготовки, необходимо тщательно усвоить теорию, запомнить формулы и понять принцип решения таких уравнений. Научившись справляться с данным видом задач, выпускники смогут рассчитывать на высокие баллы при сдаче ЕГЭ по математике.

Готовьтесь к экзаменационному тестированию вместе со «Школково»!

При повторении пройденных материалов многие учащиеся сталкиваются с проблемой поиска нужных для решения уравнений формул. Школьный учебник не всегда находится под рукой, а отбор необходимой информации по теме в Интернете занимает долгое время.

Образовательный портал «Школково» предлагает ученикам воспользоваться нашей базой знаний. Мы реализуем совершенно новый метод подготовки к итоговому тестированию. Занимаясь на нашем сайте, вы сможете выявить пробелы в знаниях и уделить внимание именно тем заданиям, которые вызывают наибольшие затруднения.

Преподаватели «Школково» собрали, систематизировали и изложили весь необходимый для успешной сдачи ЕГЭ материал в максимально простой и доступной форме.

Основные определения и формулы представлены в разделе «Теоретическая справка».

Для лучшего усвоения материала рекомендуем попрактиковаться в выполнении заданий. Внимательно просмотрите представленные на данной странице примеры показательных уравнений с решением, чтобы понять алгоритм вычисления. После этого приступайте к выполнению задач в разделе «Каталоги». Вы можете начать с самых легких заданий или сразу перейти к решению сложных показательных уравнений с несколькими неизвестными или . База упражнений на нашем сайте постоянно дополняется и обновляется.

Те примеры с показателями, которые вызвали у вас затруднения, можно добавить в «Избранное». Так вы можете быстро найти их и обсудить решение с преподавателем.

Чтобы успешно сдать ЕГЭ, занимайтесь на портале «Школково» каждый день!

На канал на youtube нашего сайта сайт, чтобы быть в курсе всех новых видео уроков.

Для начала вспомним основные формулы степеней и их свойства.

Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a a … a=a n

1. a 0 = 1 (a ≠ 0)

3. a n a m = a n + m

4. (a n) m = a nm

5. a n b n = (ab) n

7. a n /a m = a n — m

Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.

Примеры показательных уравнений:

В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.

Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0

Теперь разберем как решаются показательные уравнения?

Возьмем простое уравнение:

2 х = 2 3

Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:

2 х = 2 3
х = 3

Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.

Теперь подведем итоги нашего решения.

Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Теперь прорешаем несколько примеров:

Начнем с простого.

Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.

x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2

В следующем примере видно, что основания разные это 3 и 9.

3 3х — 9 х+8 = 0

Для начала переносим девятку в правую сторону, получаем:

Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n) m = a nm .

3 3х = (3 2) х+8

Получим 9 х+8 =(3 2) х+8 =3 2х+16

3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.

3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.

Смотрим следующий пример:

2 2х+4 — 10 4 х = 2 4

В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n) m = a nm .

4 х = (2 2) х = 2 2х

И еще используем одну формулу a n a m = a n + m:

2 2х+4 = 2 2х 2 4

Добавляем в уравнение:

2 2х 2 4 — 10 2 2х = 24

Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х,вот и ответ — 2 2х мы можем вынести за скобки:

2 2х (2 4 — 10) = 24

Посчитаем выражение в скобках:

2 4 — 10 = 16 — 10 = 6

Все уравнение делим на 6:

Представим 4=2 2:

2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.

Решим уравнение:

9 х – 12*3 х +27= 0

Преобразуем:
9 х = (3 2) х = 3 2х

Получаем уравнение:
3 2х — 12 3 х +27 = 0

Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены . Число с наименьшей степенью заменяем:

Тогда 3 2х = (3 х) 2 = t 2

Заменяем в уравнении все степени с иксами на t:

t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t 1 = 9
t 2 = 3

Возвращаемся к переменной x .

Берем t 1:
t 1 = 9 = 3 х

Стало быть,

3 х = 9
3 х = 3 2
х 1 = 2

Один корень нашли. Ищем второй, из t 2:
t 2 = 3 = 3 х
3 х = 3 1
х 2 = 1
Ответ: х 1 = 2; х 2 = 1.

На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.

Вступайте в группу

Примеры:

\(4^x=32\)
\(5^{2x-1}-5^{2x-3}=4,8\)
\((\sqrt{7})^{2x+2}-50\cdot(\sqrt{7})^{x}+7=0\)

Как решать показательные уравнения

При решении любое показательное уравнение мы стремимся привести к виду \(a^{f(x)}=a^{g(x)}\), а затем сделать переход к равенству показателей, то есть:

\(a^{f(x)}=a^{g(x)}\) \(⇔\) \(f(x)=g(x)\)

Например: \(2^{x+1}=2^2\) \(⇔\) \(x+1=2\)

Важно! Из той же логики следуют два требования для такого перехода:
- число в слева и справа должно быть одинаковым;
- степени слева и справа должны быть «чистыми» , то есть не должно быть никаких , умножений, делений и т.д.


Например:


Для привидения уравнения к виду \(a^{f(x)}=a^{g(x)}\) применяются и .

Пример . Решить показательное уравнение \(\sqrt{27}·3^{x-1}={(\frac{1}{3})}^{2x}\)
Решение:

\(\sqrt{27}·3^{x-1}={(\frac{1}{3})}^{2x}\)

Мы знаем, что \(27 = 3^3\). С учетом этого преобразуем уравнение.

\(\sqrt{3^3}·3^{x-1}={(\frac{1}{3})}^{2x}\)

По свойству корня \(\sqrt[n]{a}=a^{\frac{1}{n}}\) получим, что \(\sqrt{3^3}=({3^3})^{\frac{1}{2}}\). Далее, используя свойство степени \((a^b)^c=a^{bc}\), получаем \({(3^3)}^{\frac{1}{2}}=3^{3 \cdot \frac{1}{2}}=3^{\frac{3}{2}}\).

\(3^{\frac{3}{2}}\cdot 3^{x-1}=(\frac{1}{3})^{2x}\)

Также мы знаем, что \(a^b·a^c=a^{b+c}\). Применив это к левой части, получим: \(3^{\frac{3}{2}}·3^{x-1}=3^{\frac{3}{2}+ x-1}=3^{1,5 + x-1}=3^{x+0,5}\).

\(3^{x+0,5}=(\frac{1}{3})^{2x}\)

Теперь вспомним, что: \(a^{-n}=\frac{1}{a^n}\). Эту формулу можно использовать и в обратную сторону: \(\frac{1}{a^n} =a^{-n}\). Тогда \(\frac{1}{3}=\frac{1}{3^1} =3^{-1}\).

\(3^{x+0,5}=(3^{-1})^{2x}\)

Применив свойство \((a^b)^c=a^{bc}\) к правой части, получим: \((3^{-1})^{2x}=3^{(-1)·2x}=3^{-2x}\).

\(3^{x+0,5}=3^{-2x}\)

И вот теперь у нас основания равны и нет никаких мешающих коэффициентов и т.д. Значит, можем делать переход.

Пример . Решить показательное уравнение \(4^{x+0,5}-5·2^x+2=0\)
Решение:

\(4^{x+0,5}-5·2^x+2=0\)

Вновь пользуемся свойством степени \(a^b \cdot a^c=a^{b+c}\) в обратном направлении.

\(4^x·4^{0,5}-5·2^x+2=0\)

Теперь вспоминаем, что \(4=2^2\).

\((2^2)^x·(2^2)^{0,5}-5·2^x+2=0\)

Используя свойства степени, преобразовываем:
\((2^2)^x=2^{2x}=2^{x·2}=(2^x)^2\)
\((2^2)^{0,5}=2^{2·0,5}=2^1=2.\)

\(2·(2^x)^2-5·2^x+2=0\)

Смотрим внимательно на уравнение, и видим, что тут напрашивается замена \(t=2^x\).

\(t_1=2\) \(t_2=\frac{1}{2}\)

Однако мы нашли значения \(t\), а нам нужны \(x\). Возвращаемся к иксам, делая обратную замену.

\(2^x=2\) \(2^x=\frac{1}{2}\)

Преобразовываем второе уравнение, используя свойство отрицательной степени…

\(2^x=2^1\) \(2^x=2^{-1}\)

…и дорешиваем до ответа.

\(x_1=1\) \(x_2=-1\)

Ответ : \(-1; 1\).

Остается вопрос - как понять, когда какой метод применять? Это приходит с опытом. А пока вы его не наработали, пользуйтесь общей рекомендацией для решения сложных задач – «не знаешь, что делать – делай, что можешь». То есть, ищите как вы можете преобразовать уравнение в принципе, и пробуйте это делать – вдруг чего и выйдет? Главное при этом делать только математически обоснованные преобразования.

Показательные уравнения, не имеющие решений

Разберем еще две ситуации, которые часто ставят в тупик учеников:
- положительное число в степени равно нулю, например, \(2^x=0\);
- положительное число в степени равно отрицательному числу, например, \(2^x=-4\).

Давайте попробуем решить перебором. Если икс - положительное число, то с ростом икса вся степень \(2^x\) будет только расти:

\(x=1\); \(2^1=2\)
\(x=2\); \(2^2=4\)
\(x=3\); \(2^3=8\).

\(x=0\); \(2^0=1\)

Тоже мимо. Остаются отрицательные иксы. Вспомнив свойство \(a^{-n}=\frac{1}{a^n}\), проверяем:

\(x=-1\); \(2^{-1}=\frac{1}{2^1} =\frac{1}{2}\)
\(x=-2\); \(2^{-2}=\frac{1}{2^2} =\frac{1}{4}\)
\(x=-3\); \(2^{-3}=\frac{1}{2^3} =\frac{1}{8}\)

Несмотря на то, что число с каждым шагом становится меньше, до нуля оно не дойдет никогда. Так что и отрицательная степень нас не спасла. Приходим к логичному выводу:

Положительное число в любой степени останется положительным числом.

Таким образом, оба уравнения выше не имеют решений.

Показательные уравнения с разными основаниями

В практике порой встречаются показательные уравнения с разными основаниями, не сводимыми к друг к другу, и при этом с одинаковыми показателями степени. Выглядят они так: \(a^{f(x)}=b^{f(x)}\), где \(a\) и \(b\) – положительные числа.

Например:

\(7^{x}=11^{x}\)
\(5^{x+2}=3^{x+2}\)
\(15^{2x-1}=(\frac{1}{7})^{2x-1}\)

Такие уравнения легко можно решить делением на любую из частей уравнения (обычно делят на правую часть, то есть на \(b^{f(x)}\). Так делить можно, потому что положительное число в любой степени положительно (то есть, мы не делим на ноль). Получаем:

\(\frac{a^{f(x)}}{b^{f(x)}}\) \(=1\)

Пример . Решить показательное уравнение \(5^{x+7}=3^{x+7}\)
Решение:

\(5^{x+7}=3^{x+7}\)

Здесь у нас не получиться ни пятерку превратить в тройку, ни наоборот (по крайней мере, без использования ). А значит мы не можем прийти к виду \(a^{f(x)}=a^{g(x)}\). При этом показатели одинаковы.
Давайте поделим уравнение на правую часть, то есть на \(3^{x+7}\) (мы можем это делать, так как знаем, что тройка ни в какой степени не будет нулем).

\(\frac{5^{x+7}}{3^{x+7}}\) \(=\)\(\frac{3^{x+7}}{3^{x+7}}\)

Теперь вспоминаем свойство \((\frac{a}{b})^c=\frac{a^c}{b^c}\) и используем его слева в обратном направлении. Справа же просто сокращаем дробь.

\((\frac{5}{3})^{x+7}\) \(=1\)

Казалось бы, лучше не стало. Но вспомните еще одно свойство степени: \(a^0=1\), иначе говоря: «любое число в нулевой степени равно \(1\)». Верно и обратное: «единица может быть представлена как любое число в нулевой степени». Используем это, делая основание справа таким же как слева.

\((\frac{5}{3})^{x+7}\) \(=\) \((\frac{5}{3})^0\)

Вуаля! Избавляемся от оснований.

Пишем ответ.

Ответ : \(-7\).


Иногда «одинаковость» показателей степени не очевидна, но умелое использование свойств степени решает этот вопрос.

Пример . Решить показательное уравнение \(7^{ 2x-4}=(\frac{1}{3})^{-x+2}\)
Решение:

\(7^{ 2x-4}=(\frac{1}{3})^{-x+2}\)

Уравнение выглядит совсем печально… Мало того, что основания нельзя свести к одинаковому числу (семерка ни в какой степени не будет равна \(\frac{1}{3}\)), так еще и показатели разные… Однако давайте в показателе левой степени двойку.

\(7^{ 2(x-2)}=(\frac{1}{3})^{-x+2}\)

Помня свойство \((a^b)^c=a^{b·c}\) , преобразовываем слева:
\(7^{2(x-2)}=7^{2·(x-2)}=(7^2)^{x-2}=49^{x-2}\).

\(49^{x-2}=(\frac{1}{3})^{-x+2}\)

Теперь, вспоминая свойство отрицательной степени \(a^{-n}=\frac{1}{a}^n\), преобразовываем справа: \((\frac{1}{3})^{-x+2}=(3^{-1})^{-x+2}=3^{-1(-x+2)}=3^{x-2}\)

\(49^{x-2}=3^{x-2}\)

Аллилуйя! Показатели стали одинаковы!
Действуя по уже знакомой нам схеме, решаем до ответа.

Ответ : \(2\).

Loading...Loading...