Вещества образующиеся в процессе темновой фазы фотосинтеза. Условия, необходимые для фотосинтеза

Фотосинтез представляет собой совокупность процессов формирования световой энергии в энергию химических связей органических веществ с участием фотосинтетических красящих веществ.

Такой тип питания характерен для растений, прокариот и некоторых видов одноклеточных эукариот.

При природном синтезе углерод и вода во взаимодействии со светом преобразуются в глюкозу и свободный кислород:

6CO2 + 6H2O + световая энергия → C6H12O6 + 6O2

Современная физиология растений под понятием фотосинтеза понимает фотоавтотрофную функцию, которая является совокупностью процессов поглощения, превращения и применения квантов световой энергии в разных несамопроизвольных реакциях, включая преобразование углекислого газа в органику.

Фазы

Фотосинтез у растений происходит в листьях через хлоропласты - полуавтономные двухмембранные органеллы, относящиеся к классу пластид. С плоской формой листовых пластин обеспечивается качественное поглощение и полное использование световой энергии и углекислого газа. Вода, необходимая для природного синтеза, поступает от корней через водопроводящую ткань. Газообмен происходит с помощью диффузии через устьица и частично через кутикулу.

Хлоропласты заполнены бесцветной стромой и пронизаны ламеллами, которые при соединении друг с другом образуют тилакоиды. Именно в них и происходит фотосинтез. Цианобактерии сами собой представляют хлоропласты, поэтому аппарат для природного синтеза в них не выделен в отдельную органеллу.

Фотосинтез протекает при участии пигментов , которыми обычно выступают хлорофиллы. Некоторые организмы содержат другой пигмент - каротиноид или фикобилин. Прокариоты обладают пигментом бактериохлорофиллом, причем данные организмы не выделяют кислород по завершении природного синтеза.

Фотосинтез проходит две фазы - световую и темновую. Каждая из них характеризуется определенными реакциями и взаимодействующими веществами. Рассмотрим подробнее процесс фаз фотосинтеза.

Световая

Первая фаза фотосинтеза характеризуется образованием высокоэнергетических продуктов, которыми являются АТФ, клеточный источник энергии, и НАДФ, восстановитель. В конце стадии в качестве побочного продукта образуется кислород. Световая стадия происходит обязательно с солнечным светом.

Процесс фотосинтеза протекает в мембранах тилакоидов при участии белков-переносчиков электронов, АТФ-синтетазы и хлорофилла (или другого пигмента).

Функционирование электрохимических цепей, по которым происходит передача электронов и частично протонов водорода, образуется в сложных комплексах, формирующихся пигментами и ферментами.

Описание процесса световой фазы:

  1. При попадании солнечного света на листовые пластины растительных организмов происходит возбуждение электронов хлорофилла в структуре пластин;
  2. В активном состоянии частицы выходят из пигментной молекулы и попадают на внешнюю сторону тилакоида, заряженную отрицательно. Это происходит одновременно с окислением и последующим восстановлением молекул хлорофилла, которые отбирают очередные электроны у поступившей в листья воды;
  3. Затем происходит фотолиз воды с образованием ионов, которые отдают электроны и преобразуются в радикалы OH, способные участвовать в реакциях и в дальнейшем;
  4. Затем эти радикалы соединяются, образуя молекулы воды и свободный кислород, выходящий в атмосферу;
  5. Тилакоидная мембрана приобретает с одной стороны положительный заряд за счет иона водорода, а с другой - отрицательный за счет электронов;
  6. С достижением разницы в 200 мВ между сторонами мембраны протоны проходят через фермент АТФ-синтетазу, что приводит к превращению АДФ в АТФ (процесс фосфорилирования);
  7. С освободившимся из воды атомным водородом происходит восстановление НАДФ + в НАДФ·Н2;

Тогда как свободный кислород в процессе реакций выходит в атмосферу, АТФ и НАДФ·Н2 участвуют в темновой фазе природного синтеза.

Темновая

Обязательный компонент для этой стадии - углекислый газ , который растения постоянно поглощают из внешней среды через устьица в листьях. Процессы темновой фазы проходят в строме хлоропласта. Поскольку на данном этапе не требуется много солнечной энергии и будет достаточно получившихся в ходе световой фазы АТФ и НАДФ·Н2, реакции в организмах могут протекать и днем, и ночью. Процессы на этой стадии происходят быстрее, чем на предыдущей.

Совокупность всех процессов, происходящих в темновой фазе, представлена в виде своеобразной цепочки последовательных преобразований углекислоты, поступившей из внешней среды:

  1. Первой реакцией в такой цепочке является фиксация углекислого газа. Наличие фермента РиБФ-карбоксилаза способствует быстрому и плавному протеканию реакции, в результате которой происходит образование шестиуглеродного соединения, распадающегося на 2 молекулы фосфоглицериновой кислоты;
  2. Затем происходит довольно сложный цикл, включающий еще определенное число реакций, по завершении которых фосфоглицериновая кислота преобразуется в природный сахар - глюкозу. Этот процесс называют циклом Кальвина;

Вместе с сахаром также происходит формирование жирных кислот, аминокислот, глицерина и нуклеотидов.

Суть фотосинтеза

Из таблицы сравнений световой и темновой фаз природного синтеза можно вкратце описать суть каждой из них. Световая фаза происходит в гранах хлоропласта с обязательным включением в реакции световой энергии. В реакциях задействованы такие компоненты как белки, переносящие электроны, АТФ-синтетаза и хлорофилл, которые при взаимодействии с водой образуют свободный кислород, АТФ и НАДФ·Н2. Для темновой фазы, происходящей в строме хлоропласта, солнечный свет не является обязательным. Получившиеся на прошлом этапе АТФ и НАДФ·Н2 при взаимодействии с углекислотой формируют природный сахар (глюкозу).

Как видно из вышеизложенного, фотосинтез предстает довольно сложным и многоступенчатым явлением, включающим множество реакций, в которых задействуются разные вещества. В итоге природного синтеза получается кислород, необходимый для дыхания живых организмов и защиты их от ультрафиолетовой радиации с помощью образования озонового слоя.

— синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО 2 + 6Н 2 О + Q света → С 6 Н 12 О 6 + 6О 2 .

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d ), главным является хлорофилл a . В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы . У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы .

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Н 2 О + Q света → Н + + ОН — .

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы.ОН:

ОН — → .ОН + е — .

Радикалы.ОН объединяются, образуя воду и свободный кислород:

4НО. → 2Н 2 О + О 2 .

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н 2:

2Н + + 2е — + НАДФ → НАДФ·Н 2 .

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н 2 ; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н 2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н 2 , образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО 2 + 24Н + + АТФ → С 6 Н 12 О 6 + 6Н 2 О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С 3 - и С 4 -фотосинтез.

С 3 -фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С 3) соединения. С 3 -фотосинтез был открыт раньше С 4 -фотосинтеза (М. Кальвин). Именно С 3 -фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С 3 -фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О 2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО 2 . В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО 2 . Фотодыхание приводит к понижению урожайности С 3 -растений на 30-40% (С 3 -растения — растения, для которых характерен С 3 -фотосинтез).

С 4 -фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С 4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С 4 -растениями . В 1966 году австралийские ученые Хэтч и Слэк показали, что у С 4 -растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С 4 -растениях стали называть путем Хэтча-Слэка .

Для С 4 -растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой . В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО 2 и, самое главное, не взаимодействует с О 2 . В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО 2 и НАДФ·Н 2 .

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО 2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С 3 -фотосинтезе.

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом . К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH 3 → HNO 2 → HNO 3).

Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+).

Серобактерии окисляют сероводород до серы или серной кислоты (H 2 S + ½O 2 → S + H 2 O, H 2 S + 2O 2 → H 2 SO 4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

    Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков»

    Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз»

Основные понятия и ключевые термины: фотосинтез. Хлорофилл. Световая фаза. Темновая фаза.

Вспомните! Что такое пластический обмен?

Подумайте!

Зелёный цвет довольно часто упоминается в стихах поэтов. Так, у Богдана-Игоря Анто-нича есть строки: «...поэзии кипучей и мудрой, как зелень», «...метель зелени, пожар зелени»,

«...растительных рек возвышается зелёное наводнение». Зелёный цвет - это цвет обновления, символ молодости, спокойствия, цвет природы.

А почему растения зелёные?

Каковы условия фотосинтеза?

Фотосинтез (от греч. фото - свет, синтезис - сочетание) - чрезвычайно сложная совокупность процессов пластического обмена. Учёные выделяют три типа фотосинтеза: кислородный (с выделением молекулярного кислорода у растений и цианобактерий), безкислородный (при участии бактериохлорофилла в анаэробных условиях без выделения кислорода у фотобактерий) и бесхлорофиловый (при участии бактери-ородопсинов у архей). На глубине 2,4 км обнаружены зелёные серобактерии GSB1, которые вместо солнечного света используют слабые лучи чёрных курильщиков. Но, как писал К. Свенсон в монографии, посвящённой клеткам: «Первичным источником энергии для живой природы является энергия видимого света».

Наиболее распространённым в живой природе является кислородный фотосинтез, для которого необходимы энергия света, углекислый газ, вода, ферменты и хлорофилл. Свет для фотосинтеза поглощается хлорофиллом, вода доставляется в клетки сквозь поры клеточной стенки, углекислый газ поступает в клетки путём диффузии.

Основными фотосинтезирующими пигментами являются хлорофиллы. Хлорофилы (от греч. хлорос - зелёный и филон - листок) -зелёные пигменты растений, при участии которых происходит фотосинтез. Зелёный цвет хлорофилла - это приспособление для поглощения синих лучей и частично красных. А зелёные лучи отражаются от тела растений, попадают на сетчатку глаза человека, раздражают колбочки и вызывают цветные зрительные ощущения. Вот почему растения зелёные!

Кроме хлорофиллов у растений есть вспомогательные каротиноиды, у цианобактерий и красных водорослей - фикобилины. Зелёные

и пурпурные бактерии содержат бактериохлорофиллы, поглощающие синие, фиолетовые и даже инфракрасные лучи.

Фотосинтез происходит у высших растений, водорослей, цианобактерий, некоторых архей, то есть у организмов, известных как фото-автотрофы. Фотосинтез у растений осуществляется в хлоропластах, у цианобактерий и фотобактерий - на внутренних впячиваниях мембран с фотопигментами.

Итак, ФОТОСИНТЕЗ - процесс образования органических соединений из неорганических с использованием световой энергии и при участии фотосинтезирующих пигментов.

Каковы особенности световой и темновой фаз фотосинтеза?

В процессе фотосинтеза выделяют две стадии - световую и темно-вую фазы (ил. 49).

Световая фаза фотосинтеза происходит в гранах хлоропластов с участием света. Эта стадия начинается с момента поглощения квантов света молекулой хлорофилла. При этом электроны атома магния в молекуле хлорофилла переходят на более высокий энергетический уровень, накапливая потенциальную энергию. Значительная часть возбуждённых электронов передаёт её другим химическим соединениям для образования АТФ и восстановления НАДФ (никотинамид-адениндинуклеотидфосфат). Это соединение с таким длинным названием является универсальным биологическим переносчиком водорода в клетке. Под действием света происходит процесс разложения воды - фотолиз. При этом образуются электроны (е“), протоны (Н+) и как побочный продукт молекулярный кислород. Протоны водорода Н+, присоединяя электроны с высоким энергетическим уровнем, превращаются в атомарный водород, используемый для восстановления НАДФ+ до НАДФ. Н. Таким образом, основными процессами световой фазы являются: 1) фотолиз воды (расщепление воды под действием света с образованием кислорода); 2) восстановление НАДФ (присоединение к НАДФ атома водорода); 3) фотофосфорилирование (образование АТФ из АДФ).

Итак, светловая фаза - совокупность процессов, обеспечивающих образование молекулярного кислорода, атомарного водорода и АТФ за счёт световой энергии.


Темновая фаза фотосинтеза происходит в строме хлоропластов. Её процессы не зависят от света и могут протекать как на свету, так и в темноте, в зависимости от потребностей клетки в глюкозе. Основой темновой фазы являются циклические реакции под названием цикла фиксации углекислого газа, или цикла Кальвина. Этот процесс впервые изучил американский биохимик Мелвин Кальвин (1911 - 1997), лауреат Нобелевской премии по химии (1961). В темновой фазе из углекислого газа, водорода от НАДФ и энергии АТФ синтезируется глюкоза. Реакции фиксации СО 2 катализирует рибулозобисфосфаткар-боксилаза (Rubisco) - самый распространенный фермент на Земле.

Итак, темновая фаза - совокупность циклических реакций, которые благодаря химической энергии АТФ обеспечивают образование глюкозы с использованием углекислого газа, являющегося источником углерода, и воды - источника водорода.

В чём заключается планетарная роль фотосинтеза?

Значение фотосинтеза для биосферы трудно переоценить. Именно благодаря этому процессу световая энергия Солнца превращается фото-автотрофами в химическую энергию углеводов, которые в общем дают первичное органическое вещество. С него начинаются цепи питания, по которым энергия передаётся гетеротрофным организмам. Растения служат кормом травоядным животным, которые получают за счёт этого необходимые питательные вещества. Затем травоядные животные становятся пищей для хищников, им также необходима энергия, без которой жизнь невозможна.

Только незначительная часть энергии Солнца улавливается растениями и используется для фотосинтеза. Энергия Солнца в основном идёт на испарение и поддержание температурного режима земной поверхности. Итак, только около 40 - 50% энергии Солнца проникает в биосферу, и только 1 - 2% солнечной энергии превращается в синтезированное органическое вещество.

Зелёные растения и цианобактерии влияют на газовый состав атмосферы. Весь кислород современной атмосферы является продуктом фотосинтеза. Формирование атмосферы полностью изменило состояние земной поверхности, сделало возможным появление аэробного дыхания. В дальнейшем в процессе эволюции, после образования озонового слоя, живые организмы осуществили выход на сушу. Кроме того, фотосинтез препятствует накоплению СО 2 , защищает планету от перегревания.

Итак, фотосинтез имеет планетарное значение, обеспечивая существование живой природы планеты Земля.


ДЕЯТЕЛЬНОСТЬ Задание на сопоставление

С помощью таблицы сравните фотосинтез с аэробным дыханием и сделайте вывод о взаимосвязи пластического и энергетического обмена.

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ФОТОСИНТЕЗА И АЭРОБНОГО ДЫХАНИЯ

Задание на применение знаний

Распознайте и назовите уровни организации процесса фотосинтеза у растений. Назовите приспособления растительного организма к фотосинтезу на разных уровнях его организации.

ОТНОШЕНИЕ Биология + Литература

К. А. Тимирязев (1843 - 1920), один из наиболее известных исследователей фотосинтеза, написал: «Микроскопическое зелёное зерно хлорофилла является фокусом, точкой в мировом пространстве, в которую с одного конца притекает энергия Солнца, а с другого берут начало все проявления жизни на Земле. Оно настоящий Прометей, похитивший огонь с неба. Похищенный им луч солнца горит и в мерцающей бездне, и в ослепительной искре электричества. Луч солнца приводит в движение и маховик гигантской паровой машины, и кисть художника, и перо поэта». Примените свои знания и докажите утверждение о том, что луч Солнца приводит в движение перо поэта.

Задания для самоконтроля

1. Что такое фотосинтез? 2. Что такое хлорофилл? 3. Что такое световая фаза фотосинтеза? 4. Что такое темновая фаза фотосинтеза? 5. Что такое первичное органическое вещество? 6. Как фотосинтез определяет аэробное дыхание организмов?

7. Каковы условия фотосинтеза? 8. Каковы особенности световой и темновой фаз фотосинтеза? 9. В чём заключается планетарная роль фотосинтеза?

10. В чём сходство и различие фотосинтеза и аэробного дыхания?

Это материал учебника

Объяснение такого объемного материала, каким является фотосинтез, лучше проводить на двух спаренных уроках – тогда не теряется целостность восприятия темы. Урок необходимо начать с истории изучения фотосинтеза, строения хлоропластов и проведения лабораторной работы по изучению хлоропластов листа. После этого необходимо перейти к изучению световой и темновой фаз фотосинтеза. При объяснении реакций, происходящих в этих фазах, необходимо составить общую схему:

По ходу объяснения надо нарисовать схему световой фазы фотосинтеза .

1. Поглощение кванта света молекулой хлорофилла, которая находится в мембранах тилакоидов гран, приводит к потере ею одного электрона и переводит ее в возбужденное состояние. Электроны переносятся по электронтранспортной цепи, что приводит к восстановлению НАДФ + до НАДФ Н.

2. Место вышедших электронов в молекулах хлорофилла занимают электроны молекул воды – так вода под действием света подвергается разложению (фотолизу). Образовавшиеся гидроксилы ОН– становятся радикалами и объединяются в реакции 4 ОН – → 2 H 2 O +O 2 , приводящей к выделению в атмосферу свободного кислорода.

3. Ионы водорода Н+ не проникают через мембрану тилакоида и накапливаются внутри, заряжая его положительно, что приводит к увеличению разности электрических потенциалов (РЭП) на мембране тилакоида.

4. При достижении критической РЭП протоны устремляются по протонному каналу наружу. Этот поток положительно заряженных частиц используется для получения химической энергии с помощью специального ферментного комплекса. Образовавшиеся в результате молекулы АТФ переходят в строму, где участвуют в реакциях фиксации углерода.

5. Ионы водорода, вышедшие на поверхность мембраны тилакоида, соединяются с электронами, образуя атомарный водород, который идет на восстановление переносчика НАДФ + .

Спонсор публикации статьи группа компаний "Арис". Производство, продажа и аренда строительных лесов (рамные фасадные ЛРСП, рамные высотные А-48 и др.) и вышек-тур (ПСРВ "Арис", ПСРВ "Арис компакт" и "Арис-дачная", помосты). Хомуты для строительных лесов, строительные ограждения, колесные опоры для вышек. Узнать подробнее о компании, посмотреть каталог продукции и цены, контакты Вы сможете на сайте, который располагается по адресу: http://www.scaffolder.ru/.

После рассмотрения данного вопроса, проанализировав его еще раз по составленной схеме, предлагаем учащимся заполнить таблицу.

Таблица. Реакции световой и темновой фаз фотосинтеза

После заполнения первой части таблицы можно перейти к разбору темновой фазы фотосинтеза .

В строме хлоропласта постоянно присутствуют пентозы – углеводы, представляющие собой пятиуглеродные соединения, которые образуются в цикле Кальвина (цикл фиксации углекислого газа).

1. К пентозе присоединяется углекислый газ, образуется неустойчивое шестиуглеродное соединение, которое распадается на две молекулы 3-фосфоглицериновой кислоты (ФГК).

2. Молекулы ФГК принимают от АТФ по одной фосфатной группе и обогащаются энергией.

3. Каждая из ФГК присоединяет по одному атому водорода от двух переносчиков, превращаясь в триозу. Триозы, объединяясь, образуют глюкозу, а затем крахмал.

4. Молекулы триозы, объединяясь в разных сочетаниях, образуют пентозы и вновь включаются в цикл.

Суммарная реакция фотосинтеза:

Схема. Процесс фотосинтеза

Тест

1. Фотосинтез осуществляется в органеллах:

а) митохондрии;
б) рибосомы;
в) хлоропласты;
г) хромопласты.

2. Пигмент хлорофилл сосредоточен в:

а) оболочке хлоропласта;
б) строме;
в) гранах.

3. Хлорофилл поглощает свет в области спектра:

а) красной;
б) зеленой;
в) фиолетовой;
г) во всей области.

4. Свободный кислород при фотосинтезе выделяется при расщеплении:

а) углекислого газа;
б) АТФ;
в) НАДФ;
г) воды.

5. Свободный кислород образуется в:

а) темновой фазе;
б) световой фазе.

6. В световой фазе фотосинтеза АТФ:

а) синтезируется;
б) расщепляется.

7. В хлоропласте первичный углевод образуется в:

а) световой фазе;
б) темновой фазе.

8. НАДФ в хлоропласте необходим:

1) как ловушка для электронов;
2) в качестве фермента для образования крахмала;
3) как составная часть мембраны хлоропласта;
4) в качестве фермента для фотолиза воды.

9. Фотолиз воды – это:

1) накопление воды под действием света;
2) диссоциация воды на ионы под действием света;
3) выделение водяных паров через устьица;
4) нагнетание воды в листья под действием света.

10. Под воздействием квантов света:

1) хлорофилл превращается в НАДФ;
2) электрон покидает молекулу хлорофилла;
3) хлоропласт увеличивается в объеме;
4) хлорофилл превращается в АТФ.

ЛИТЕРАТУРА

Богданова Т.П., Солодова Е.А. Биология. Справочник для старшеклассников и поступающих в вузы. – М.: ООО «АСТ-Пресс школа», 2007.

Loading...Loading...