Иррациональные уравнения для чайников. Уравнения иррациональные и способы их решения

Иррациональное уравнение — это любое уравнение, содержащее функцию под знаком корня. Например:

Такие уравнения всегда решаются в 3 шага:

  1. Уединить корень. Другими словами, если слева от знака равенства помимо корня стоят другие числа или функции, все это надо перенести вправо, поменяв знак. Слева при этом должен остаться только радикал — без всяких коэффициентов.
  2. 2. Возводим обе части уравнения в квадрат. При этом помним, что область значений корня — все неотрицательные числа. Следовательно, функция справа иррационального уравнения также должна быть неотрицательна: g (x ) ≥ 0.
  3. Третий шаг логично следует из второго: надо выполнить проверку. Дело в том, что на втором шаге у нас могли появиться лишние корни. И чтобы отсечь их, надо подставить полученные числа-кандидаты в исходное уравнение и проверить: действительно ли получается верное числовое равенство?

Решение иррационального уравнения

Разберемся с нашим иррациональным уравнением, данным в самом начале урока. Тут корень уже уединен: слева от знака равенства нет ничего, кроме корня. Возводим обе стороны в квадрат:

2x 2 − 14x + 13 = (5 − x ) 2
2x 2 − 14x + 13 = 25 − 10x + x 2
x 2 − 4x − 12 = 0

Решаем полученное квадратное уравнение через дискриминант:

D = b 2 − 4ac = (−4) 2 − 4 · 1 · (−12) = 16 + 48 = 64
x 1 = 6; x 2 = −2

Осталось лишь подставить эти числа в исходное уравнение, т.е. выполнить проверку. Но и тут можно поступить грамотно, чтобы упростить итоговое решение.

Как упростить решение

Давайте подумаем: зачем вообще мы выполняем проверку в конце решения иррационального уравнения? Мы хотим убедиться, что при подстановке наших корней справа от знака равенства будет стоять неотрицательное число. Ведь мы уже точно знаем, что слева стоит именно неотрицательное число, потому что арифметический квадратный корень (из-за которого наше уравнение и носит название иррационального) по определению не может быть меньше нуля.

Следовательно, все, что нам надо проверить — это чтобы функция g (x ) = 5 − x , которая стоит справа от знака равенства, была неотрицательной:

g (x ) ≥ 0

Подставляем наши корни в эту функцию и получаем:

g (x 1) = g (6) = 5 − 6 = −1 < 0
g (x 2) = g (−2) = 5 − (−2) = 5 + 2 = 7 > 0

Из полученных значений следует, что корень x 1 = 6 нас не устраивает, поскольку при подстановке в правую часть исходного уравнения мы получаем отрицательное число. А вот корень x 2 = −2 нам вполне подходит, потому что:

  1. Этот корень является решением квадратного уравнения, полученного в результате возведения обеих сторон иррационального уравнения в квадрат.
  2. Правая сторона исходного иррационального уравнения при подстановке корня x 2 = −2 обращается в положительное число, т.е. область значений арифметического корня не нарушена.

Вот и весь алгоритм! Как видите, решать уравнения с радикалами не так уж и сложно. Главное — не забывать проверять полученные корни, иначе очень велика вероятность получить лишние ответы.

Иррациональными называются уравнения, содержащие неизвестную величину под знаком корня. Таковы, например, уравнения

Во многих случаях, применяя однократно или многократно возведение в степень обеих частей уравнения, удается свести иррациональное уравнение к алгебраическому уравнению той или иной степени (являющемуся следствием исходного уравнения). Так как при возведении уравнения в степень могут появиться посторонние решения, то, решив алгебраическое уравнение, к которому мы привели данное иррациональное уравнение, следует найденные корни проверить подстановкой в исходное уравнение и сохранить лишь те, которые ему удовлетворяют, а остальные - посторонние - отбросить.

При решении иррациональных уравнений мы ограничиваемся только их действительными корнями; все корни четной степени в записи уравнений понимаются в арифметическом смысле.

Рассмотрим некоторые типичные примеры иррациональных уравнений.

А. У равнения, содержащие неизвестную под знаком квадратного корня. Если данное уравнение содержит только один квадратный корень, под знаком которого имеется неизвестная то следует этот корень уединить, т. е. поместить в одной части уравнения, а все другие члены перенести в другую часть. После возведения в квадрат обеих частей уравнения мы уже освободимся от иррациональности и получим алгебраическое уравнение для

Пример 1. Решить уравнение .

Решение. Уединяем корень в левой части уравнения;

Возводим полученное равенство в квадрат:

Находим корни этого уравнения:

Проверка показывает, что лишь удовлетворяет исходному уравнению.

Если в уравнение входит два и более корня, содержащих х, то возведение в квадрат приходится повторять несколько раз.

Пример 2. Решить следующие уравнения:

Решение, а) Возводим обе части уравнения в квадрат:

Уединяем корень:

Полученное уравнение снова возводим в квадрат:

После преобразований получаем для следующее квадратное уравнение:

решаем его:

Подстановкой в исходное уравнение убеждаемся в том, что есть его корень, а является для него посторонним корнем.

б) Пример можно решить тем же методом, каким был решен пример а). Однако, воспользовавшись тем, что правая часть данного уравнения не содержит неизвестной величины, поступим иначе. Умножим уравнение на выражение, сопряженное с его левой частью; получим

Справа стоит произведение суммы на разность, т. е. разность квадратов. Отсюда

В левой части данного уравнения стояла сумма квадратных корней; в левой части полученного теперь уравнения стоит разность тех же корней. Запишем данное и полученное уравнения:

Взяв сумму этих уравнений, получаем

Возведем в квадрат последнее уравнение и после упрощений получим

Отсюда находим . Проверкой убеждаемся в том, что корнем данного уравнения служит только число . Пример 3. Решить уравнение

Здесь уже под знаком радикала мы имеем квадратные трехчлены.

Решение. Умножаем уравнение на выражение, сопряженное с его левой частью:

Вычтем последнее уравнение из данного:

Возводим это уравнение в квадрат:

Из последнего уравнения находим . Проверкой убеждаемся, что корнем данного уравнения служит только число х = 1.

Б. У равнения, содержащие корни третьей степени. Системы иррациональных уравнений. Ограничимся отдельными примерами таких уравнений и систем.

Пример 4. Решить уравнение

Решение. Покажем два способа решения уравнения (70.1). Первый способ. Возведем обе части данного уравнения в куб (см. формулу (20.8)):

(здесь мы заменили сумму кубических корней числом 4, пользуясь уравнением ).

Итак, имеем

т. е., после упрощений,

откуда Оба корня удовлетворяют исходному уравнению.

Второй способ. Положим

Уравнение (70.1) запишется в виде . Кроме того, видно что . От уравнения (70.1) мы перешли к системе

Разделив первое уравнение системы почленно на второе, найдем

Методы решения иррациональных уравнений.

Предварительная подготовка к уроку: учащиеся должны уметь решать иррациональные уравнения различными способами.

За три недели до данного занятия учащиеся получают домашнее задание №1: решить различные иррациональные уравнения. (Учащиеся самостоятельно находят по 6 различных иррациональных уравнений и решают их в парах.)

За одну неделю до данного занятия учащиеся получают домашнее задание №2, которое выполняют индивидуально.

1. Решить уравнение различными способами.

2. Оценить достоинства и недостатки каждого способа.

3. Оформить запись выводов в виде таблицы.

п/п

Способ

Достоинства

Недостатки

Цели урока:

Образовательная: обобщение знаний учащихся по данной теме, демонстрация различных методов решения иррациональных уравнений, умения учащихся подходить к решению уравнений с исследовательских позиций.

Воспитательная: воспитание самостоятельности, умения выслушивать других и общаться в группах, повышение интереса к предмету.

Развивающая: развитие логического мышления, алгоритмической культуры, навыков самообразования, самоорганизации, работы в парах при выполнении домашнего задания, умений анализировать, сравнивать, обобщать, делать выводы.

Оборудование: компьютер, проектор, экран, таблица «Правила решения иррациональных уравнений», плакат с цитатой М.В. Ломоносова «Математику уже затем учить следует, что она ум в порядок приводит», карточки.

Правила решения иррациональных уравнений.

Тип урока: урок-семинар (работа в группах по 5-6 человек, в каждой группе обязательно есть сильные ученики).

Ход урока

I . Организационный момент

(Сообщение темы и целей урока)

II . Презентация исследовательской работы «Методы решения иррациональных уравнений»

(Работу представляет учащийся, который ее проводил.)

III . Анализ методов решения домашнего задания

(По одному учащемуся от каждой группы записывают на доске предложенные ими способы решения. Каждая группа анализирует один из способов решения, оценивает достоинства и недостатки, делает выводы. Учащиеся групп дополняют, если это необходимо. Оценивается анализ и выводы группы. Ответы должны быть четкими и полными.)

Первый способ: возведение обеих частей уравнения в одну и ту же степень с последующей проверкой.

Решение.

Снова возведем обе части уравнения в квадрат:

Отсюда

Проверка:

1. Если х= 42, то , значит, число 42 не является корнем уравнения.

2. Если х= 2, то , значит, число 2 является корнем уравнения.

Ответ: 2.

п/п

Способ

Достоинства

Недостатки

Возведение обеих частей уравнения в одну и ту же степень

1. Понятно.

2. Доступно.

1. Словесная запись.

2. Сложная проверка.

Вывод. При решении иррациональных уравнений методом возведения обеих частей уравнения в одну и ту же степень необходимо вести словесную запись, что делает решение понятным и доступным. Однако обязательная проверка иногда бывает сложной и занимает много времени. Этот метод можно использовать для решения несложных иррациональных уравнений, содержащих 1-2 радикала.

Второй способ: равносильные преобразования.

Решение: Возведем обе части уравнения в квадрат:

Ответ: 2.

п/п

Способ

Достоинства

Недостатки

Равносильных преобразований

1. Отсутствие словесного описания.

2. Нет проверки.

3. Четкая логическая запись.

4. Последовательность равносильных переходов.

1. Громоздкая запись.

2. Можно ошибиться при комбинации знаков системы и совокупности.

Вывод. При решении иррациональных уравнений методом равносильных переходов нужно четко знать, когда ставить знак системы, а когда - совокупности. Громоздкость записи, различные комбинации знаков системы и совокупности нередко приводят к ошибкам. Однако последовательность равносильных переходов, четкая логическая запись без словесного описания, не требующая проверки, являются бесспорными достоинствами данного способа.

Третий способ: функционально-графический.

Решение.

Рассмотрим функции и .

1. Функция степенная; является возрастающей, т.к. показатель степени - положительное (не целое) число.

D( f ).

Составим таблицу значений x и f ( x ).

1,5

3,5

f(x)

2. Функция степенная; является убывающей.

Найдем область определения функции D ( g ).

Составим таблицу значений x и g ( x ).

g(x)

Построим данные графики функций в одной системе координат.

Графики функций пересекаются в точке с абсциссой Т.к. функция f ( x ) возрастает, а функция g ( x ) убывает, то решение уравнения будет только одно.

Ответ: 2.

п/п

Способ

Достоинства

Недостатки

Функционально-графический

1. Наглядность.

2. Не нужно делать сложных алгебраических преобразований и следить за ОДЗ.

3. Позволяет найти количество решений.

1. словесная запись.

2. Не всегда можно найти точный ответ, а если ответ точный, то нужна проверка.

Вывод. Функционально-графический метод является наглядным, позволяет найти количество решений, но применять его лучше тогда, когда легко можно построить графики рассматриваемых функций и получить точный ответ. Если ответ приближенный, то лучше воспользоваться другим методом.

Четвертый способ: введение новой переменной.

Решение. Введем новые переменные, обозначив Получим первое уравнение системы

Составим второе уравнение системы.

Для переменной :

Для переменной

Поэтому

Получим систему двух рациональных уравнений, относительно и

Вернувшись к переменной , получим

Введение новой переменной

Упрощение - получение системы уравнений, не содержащих радикалы

1. Необходимость отслеживать ОДЗ новых переменных

2. Необходимость возврата к исходной переменной

Вывод. Этот метод лучше применять для иррациональных уравнений, содержащих радикалы различных степеней, или одинаковые многочлены под знаком корня и за знаком корня, или взаимообратные выражения под знаком корня.

- Итак, ребята, для каждого иррационального уравнения необходимо выбирать наиболее удобный способ решения: понятный. Доступный, логически и грамотно оформленный. Поднимите руку, кто из вас при решении этого уравнения отдал бы предпочтение:

1) методу возведения обеих частей уравнения в одну и ту же степень с проверкой;

2) методу равносильных преобразований;

3) функционально-графическому методу;

4) методу введения новой переменной.

IV . Практическая часть

(Работа в группах. Каждая группа учащихся получает карточку с уравнением и решает ее в тетрадях. В это время по одному представителю от группы решают пример на доске. Учащиеся каждой группы решают тот же пример, что и член их группы, и следят за правильностью выполнения задания на доске. Если отвечающий у доски допускает ошибки, то тот, кто их замечает, поднимает руку и помогает исправить. В ходе занятия каждый учащийся помимо примера, решаемого его группой, должен записать в тетрадь и другие, предложенные группам, и решить их дома.)

Группа 1.

Группа 2.

Группа 3.

V . Самостоятельная работа

(В группах сначала идет обсуждение, а затем учащиеся приступают к выполнению задания. Правильное решение, подготовленное преподавателем, выводится на экран.)

VI . Подведение итогов урока

Теперь вы знаете, что решение иррациональных уравнений требует от вас хороших теоретических знаний, умения применять их на практике, внимания, трудолюбия, сообразительности.

Домашнее задание

Решить уравнения, предложенные группам в ходе занятия.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Изучая алгебру, школьники сталкиваются с уравнениями многих видов. Среди тех из них, которые наиболее простые, можно назвать линейные, содержащие одну неизвестную. Если переменная в математическом выражении возводится в определенную степень, то уравнение называют квадратным, кубическим, биквадратным и так далее. Указанные выражения могут содержать рациональные числа. Но существуют также уравнения иррациональные. От прочих они отличаются наличием функции, где неизвестное находится под знаком радикала (то есть чисто внешне переменную здесь можно увидеть написанной под квадратным корнем). Решение иррациональных уравнений имеет свои характерные особенности. При вычислении значения переменной для получения правильного ответа их следует обязательно учитывать.

«Невыразимые словами»

Не секрет, что древние математики оперировали в основном рациональными числами. К таковым относятся, как известно, целые, выражаемые через обыкновенные и десятичные периодические дроби представители данного сообщества. Однако ученые Среднего и Ближнего Востока, а также Индии, развивая тригонометрию, астрономию и алгебру, иррациональные уравнения тоже учились решать. К примеру, греки знали подобные величины, но, облекая их в словесную форму, употребляли понятие «алогос», что означало «невыразимые». Несколько позднее европейцы, подражая им, называли подобные числа «глухими». От всех остальных они отличаются тем, что могут быть представлены только в форме бесконечной непериодической дроби, окончательное числовое выражение которой получить просто невозможно. Поэтому чаще подобные представители царства чисел записываются в виде цифр и знаков как некоторое выражение, находящееся под корнем второй или большей степени.

На основании вышесказанного попробуем дать определение иррациональному уравнению. Подобные выражения содержат так называемые «невыразимые числа», записанные с использованием знака квадратного корня. Они могут представлять собой всевозможные довольно сложные варианты, но в своей наипростейшей форме имеют такой вид, как на фото ниже.

Преступая к решению иррациональных уравнений, перво-наперво необходимо вычислить область допустимых значений переменной.

Имеет ли смысл выражение?

Необходимость проверки полученных значений вытекает из свойств Как известно, подобное выражение приемлемо и имеет какой-либо смысл лишь при определенных условиях. В случаях корня четной степени все подкоренные выражения должны быть положительными или равняться нулю. Если данное условие не выполняется, то представленная математическая запись не может считаться осмысленной.

Приведем конкретный пример, как решать иррациональные уравнения (на фото ниже).

В данном случае очевидно, что указанные условия ни при каких значениях, принимаемых искомой величиной, выполняться не могут, так как получается, что 11 ≤ x ≤ 4. А значит, решением может являться только Ø.

Метод анализа

Из вышеописанного становится понятно, как решать иррациональные уравнение некоторых типов. Здесь действенным способом может оказаться простой анализ.

Приведем ряд примеров, которые снова наглядно это продемонстрируют (на фото ниже).

В первом случае при внимательном рассмотрении выражения сразу оказывается предельно ясно, что истинным оно быть не может. Действительно, ведь в левой части равенства должно получаться положительное число, которое никак не способно оказаться равным -1.

Во втором случае сумма двух положительных выражений может считаться равной нулю, лишь только когда х - 3 = 0 и х + 3 = 0 одновременно. А подобное опять невозможно. И значит, в ответе снова следует писать Ø.

Третий пример очень похож на уже рассмотренный ранее. Действительно, ведь здесь условия ОДЗ требуют, чтобы выполнялось следующее абсурдное неравенство: 5 ≤ х ≤ 2. А подобное уравнение аналогичным образом никак не может иметь здравых решений.

Неограниченное приближение

Природа иррационального наиболее ясно и полно может быть объяснена и познана только через нескончаемый ряд чисел десятичной дроби. А конкретным, ярким примером из членов этого семейства является πи. Не без оснований предполагается, что эта математическая константа была известна с древних времен, используясь при вычислении длин окружности и площади круга. Но среди европейцев ее впервые применили на практике англичанин Уильям Джонс и швейцарец Леонард Эйлер.

Возникает эта константа следующим образом. Если сравнивать самые разные по длине окружности, то отношение их длин и диаметров в обязательном порядке равны одному и тому же числу. Это и есть πи. Если выразить его через обыкновенную дробь, то приблизительно получим 22/7. Впервые это сделал великий Архимед, портрет которого представлен на рисунке выше. Именно поэтому подобное число получило его имя. Но это не явное, а приближенное значение едва ли не самого удивительного из чисел. Гениальный ученый с точностью до 0,02 нашел искомую величину, но, по сути, данная константа не имеет реального значения, а выражается как 3,1415926535… Она представляет собой бесконечный ряд цифр, неограниченно приближаясь к некоему мифическому значению.

Возведение в квадрат

Но вернемся к иррациональным уравнениям. Чтобы отыскать неизвестное, в данном случае очень часто прибегают к простому методу: возводят обе части имеющегося равенства в квадрат. Подобный способ обычно дает хорошие результаты. Но следует учитывать коварство иррациональных величин. Все полученные в результате этого корни необходимо проверять, ведь они могут не подойти.

Но продолжим рассмотрение примеров и постараемся найти переменные вновь предложенным способом.

Совсем несложно, применив теорему Виета, найти искомые значения величин после того, как в результате определенных оперций у нас образовалось квадратное уравнение. Здесь получается, что среди корней будут 2 и -19. Однако при проверке, подставив полученные значение в изначальное выражение, можно убедиться, что ни один из этих корней не подходит. Это частое явление в иррациональных уравнениях. Значит, наша дилемма вновь не имеет решений, а в ответе следует указать пустое множество.

Примеры посложней

В некоторых случаях требуется возводить в квадрат обе части выражения не один, а несколько раз. Рассмотрим примеры, где требуется указанное. Их можно увидеть ниже.

Получив корни, не забываем их проверять, ведь могут возникнуть лишние. Следует пояснить, почему такое возможно. При применении подобного метода происходит в некотором роде рационализация уравнения. Но избавляясь от неугодных нам корней, которые мешают производить арифметические действия, мы как бы расширяем существующую область значений, что чревато (как можно понять) последствиями. Предвидя подобное, мы и производим проверку. В данном случае есть шанс убедиться, что подходит только один из корней: х = 0.

Системы

Что же делать в случаях, когда требуется осуществить решение систем иррациональных уравнений, и у нас в наличии не одно, а целых два неизвестных? Здесь поступаем так же, как в обычных случаях, но с учетом вышеперечисленных свойств данных математических выражений. И в каждой новой задаче, разумеется, следует применять творческий подход. Но, опять же, лучше рассмотреть все на конкретном примере, представленном ниже. Здесь не просто требуется найти переменные х и у, но и указать в ответе их сумму. Итак, имеется система, содержащая иррациональные величины (см. фото ниже).

Как можно убедиться, подобная задача не представляет ничего сверхъестественно сложного. Требуется лишь проявить сообразительность и догадаться, что левая часть первого уравнения представляет собой квадрат суммы. Подобные задания встречаются в ЕГЭ.

Иррациональное в математике

Каждый раз потребность в создании новых видов чисел возникала у человечества тогда, когда ему не хватало «простора» для решения каких-то уравнений. Иррациональные числа не являются исключением. Как свидетельствуют факты из истории, впервые великие мудрецы обратили на это внимание еще до нашей эры, веке в VII. Сделал это математик из Индии, известный под именем Манава. Он отчетливо понимал, что из некоторых натуральных чисел невозможно извлечь корень. К примеру, к таковым относятся 2; 17 или 61, а также многие другие.

Один из пифагорейцев, мыслитель по имени Гиппас, пришел к тому же выводу, пытаясь производить вычисления с числовыми выражениями сторон пентаграммы. Открыв математические элементы, которые не могут быть выражены цифровыми значениями и не обладают свойствами обычных чисел, он настолько разозлил своих коллег, что был выброшен за борт корабля, в море. Дело в том, что другие пифагорейцы сочли его рассуждения бунтом против законов вселенной.

Знак радикала: эволюция

Знак корня для выражения числового значения «глухих» чисел стал использоваться при решении иррациональных неравенств и уравнений далеко не сразу. Впервые о радикале начали задумываться европейские, в частности итальянские, математики приблизительно в XIII веке. Тогда же для обозначения придумали задействовать латинскую R. Но немецкие математики в своих работах поступали иначе. Им больше понравилась буква V. В германии вскоре распространилось обозначение V(2), V(3), что призвано было выражать корень квадратный из 2, 3 и так далее. Позднее в дело вмешались нидерландцы и видоизменили знак радикала. А завершил эволюцию Рене Декарт, доведя знак квадратного корня до современного совершенства.

Избавление от иррационального

Иррациональные уравнения и неравенства могут включать в себя переменную не только под знаком квадратного корня. Он может быть любой степени. Самым распространенным способом от него избавиться является возможность возвести обе части равенства в соответствующую степень. Это основное действие, помогающее при операциях с иррациональным. Действия в четных случаях особенно не отличаются от тех, которые были уже разобраны нами ранее. Здесь должны быть учтены условия неотрицательности подкоренного выражения, а также по окончании решения необходимо производить отсев посторонних значений переменных таким образом, как было показано в рассмотренных уже примерах.

Из дополнительных преобразований, помогающих найти правильный ответ, часто используется умножение выражения на сопряженное, а также нередко требуется введение новой переменной, что облегчает решение. В некоторых случаях, чтобы отыскать значение неизвестных, целесообразно применять графики.

Loading...Loading...