Период математического маятника определяется выражением вида. Гармонические колебания

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Период колебания математического маятника зависит от длины нити: с уменьшением длины нити период колебания уменьшается

Для математического маятника выполняются некоторые законы:

1 закон. Если, сохраняя одну и ту же длину маятника, подвешивать разные грузы (например 5кг и 100 кг), то период колебаний получится один и тот же, хотя массы грузов сильно различаются. Период математического маятника не зависит от массы груза.

2 закон. Если маятник отклонять на разные, но маленькие углы, то он будет колебаться с одним и тем же периодом, хотя и с разными амплитудами. Пока амплитуда маятника будут малы, колебания и по своей форме будут похожи на гармонические, и тогда период математического маятника не зависит от амплитуды колебаний. Это свойство приняло название изохронизмом..

Давайте выведем формулу периода математического маятника.

На груз m математического маятника действуют сила тяжести mg и сила упругости нити Fynp. Ось 0Х направим вдоль касательной к траектории движения вверх. Запишем второй закон Ньютона для данного случая:

С проецируем все на ось ОХ:

При малых углах

Сделав замены и маленькие преобразования у нас получается, что уравнение имеет вид:

Сравнивая полученное выражение с уравнением гармонических колебаний у нас получается:

Из уравнения видно, что циклическая частота пружинного маятника будет иметь вид:

Тогда период математического маятника будет равен:

Период математического маятника зависит только от ускорения свободного падения g и от длины маятника l. Из полученной формулы следует, что период маятника не зависит от его массы и от амплитуды (при условии, что она достаточно мала). Так же мы установили количественную зависимость между периодом маятника, его длиной и ускорением свободного падения. Период математического маятника пропорционален корню квадратному из отношения длины маятника к ускорению свободного падения. Коэффициент пропорциональности равен 2p

Так же есть:

Период пружинного маятника

Период физического маятника

Период крутильного маятника

Колебательное движение - периодическое или почти периодическое движение тела, координата, скорость и ускорение которого через равные промежутки времени принимают примерно одинаковые значения.

Механические колебания возникают тогда, когда при выводе тела из положения равновесия появляется сила, стремящаяся вернуть тело обратно.

Смещение х - отклонение тела от положения равновесия.

Амплитуда А - модуль максимального смещения тела.

Период колебания Т - время одного колебания:

Частота колебания

Число колебаний, совершаемых телом за единицу времени: При колебаниях скорость и ускорение периодически изменяются. В положении равновесия скорость максимальна, ускорение равно нулю. В точках максимального смещения ускорение достигает максимума, скорость обращается в нуль.

ГРАФИК ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

Гармоническими называются колебания, происходящие по закону синуса или косинуса:

где x(t) - смещение системы в момент t, A - амплитуда, ω - циклическая частота колебаний.

Если по вертикальной оси откладывать отклонение тела от положения равновесия, а по горизонтальной - время, то получится график колебания х = x(t) - зависимость смещения тела от времени. При свободных гармонических колебаниях - это синусоида или косинусоида. На рисунке представлены графики зависимости смещения х, проекций скорости V х и ускорения а х от времени.

Как видно из графиков, при максимальном смещении х скорость V колеблющегося тела равна нулю, ускорение а, а значит и действующая на тело сила, максимальны и направлены противоположно смещению. В положении равновесия смещение и ускорение обращаются в нуль, скорость максимальна. Проекция ускорения всегда имеет знак, противоположный смещению.

ЭНЕРГИЯ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ

Полная механическая энергия колеблющегося тела равна сумме его кинетической и потенциальной энергий и при отсутствии трения остается постоянной:

В момент, когда смещение достигает максимума х = А, скорость, а вместе с ней и кинетическая энергия, обращаются в нуль.

При этом полная энергия равна потенциальной энергии:

Полная механическая энергия колеблющегося тела пропорциональна квадрату амплитуды его колебаний.

Когда система проходит положение равновесия, смещение и потенциальная энергия равны нулю: х = 0, Е п = 0. Поэтому полная энергия равна кинетической:

Полная механическая энергия колеблющегося тела пропорциональна квадрату его скорости в положении равновесия. Следовательно:

МАТЕМАТИЧЕСКИЙ МАЯТНИК

1. Математический маятник - это материальная точка, подвешенная на невесомой нерастяжимой нити.

В положении равновесия сила тяжести компенсируется силой натяжения нити. Если маятник отклонить и отпустить, то силы и перестанут компенсировать друг друга, и возникнет результирующая сила , направленная к положению равновесия. Второй закон Ньютона:

При малых колебаниях, когда смещение х много меньше l, материальная точка будет двигаться практически вдоль горизонтальной оси х. Тогда из треугольника МАВ получаем:

Так как sin a = х/l , то проекция результирующей силы R на ось х равна

Знак "минус" показывает, что сила R всегда направлена против смещения х.

2. Итак, при колебаниях математического маятника, так же как и при колебаниях пружинного маятника, возвращающая сила пропорциональна смещению и направлена в противоположную сторону.

Сравним выражения для возвращающей силы математического и пружинного маятников:

Видно, что mg/l является аналогом k. Заменяя, k на mg/l в формуле для периода пружинного маятника

получаем формулу для периода математического маятника:

Период малых колебаний математического маятника не зависит от амплитуды.

Математический маятник используют для измерения времени, определения ускорения свободного падения в данном месте земной поверхности.

Свободные колебания математического маятника при малых углах отклонения являются гармоническими. Они происходят благодаря равнодействующей силы тяжести и силы натяжения нити, а также инерции груза. Равнодействующая этих сил является возвращающей силой.

Пример. Определите ускорение свободного падения на планете, где маятник длиной 6,25 м имеет период свободных колебаний 3,14 с.

Период колебаний математического маятника зависит от длины нити и ускорения свободного падения:

Возведя обе части равенства в квадрат, получаем:

Ответ: ускорение свободного падения равно 25 м/с 2 .

Задачи и тесты по теме "Тема 4. "Механика. Колебания и волны"."

  • Поперечные и продольные волны. Длина волны

    Уроков: 3 Заданий: 9 Тестов: 1

  • Звуковые волны. Скорость звука - Механические колебания и волны. Звук 9 класс

Период колебаний физического маятника зависит от многих обстоятельств: от размеров и формы тела, от расстояния между центром тяжести и точкой подвеса и от распределения массы тела относительно этой точки; поэтому вычисление периода подвешенного тела -довольно сложная задача. Проще обстоит дело для математического маятника. Из наблюдений над подобными маятниками можно установить следующие простые законы.

1. Если, сохраняя одну и ту же длину маятника (расстояние от точки подвеса до центра тяжести груза), подвешивать разные грузы, то период колебаний получится один и тот же, хотя массы грузов сильно различаются. Период математического маятника не зависит от массы груза.

2. Если при пуске маятника отклонять его на разные (но не слишком большие) углы, то он будет колебаться с одним и тем же периодом, хотя и с разными амплитудами. Пока не слишком велики амплитуды, колебания достаточно близки по своей форме к гармоническому (§ 5) и период математического маятника не зависит от амплитуды колебаний. Это свойство называется изохронизмом (от греческих слов «изос» - равный, «хронос» - время).

Впервые этот факт был установлен в 1655 г. Галилеем якобы при следующих обстоятельствах. Галилей наблюдал в Пизанском соборе качания паникадила на длинной цепи, которое толкнули при зажигании. В течение богослужения размахи качаний постепенно затухали (§ 11), т. е. амплитуда колебаний уменьшалась, но период оставался одним и тем же. В качестве указателя времени Галилей пользовался собственным пульсом.

Выведем теперь формулу для периода колебаний математического маятника.

Рис. 16. Колебания маятника в плоскости (а) и движение по конусу (б)

При качаниях маятника груз движется ускоренно по дуге (рис. 16, а) под действием возвращающей силы , которая меняется при движении. Расчет движения тела под действием непостоянной силы довольно сложен. Поэтому мы для упрощения поступим следующим образом.

Заставим маятник совершать не колебание в одной плоскости, а описывать конус так, чтобы груз двигался по окружности (рис. 16, б). Это движение может быть получено в результате сложения двух независимых колебаний: одного - по-прежнему в плоскости рисунка и другого - в перпендикулярной плоскости. Очевидно, периоды обоих этих плоских колебаний одинаковы, так как любая плоскость качаний ничем не отличается от всякой другой. Следовательно, и период сложного движения - обращения маятника по конусу - будет тот же, что и период качания водной плоскости. Этот вывод можно легко иллюстрировать непосредственным опытом, взяв два одинаковых маятника и сообщив одному из них качание в плоскости, а другому - вращение по конусу.

Но период обращения «конического» маятника равен длине описываемой грузом окружности, деленной на скорость:

Если угол отклонения от вертикали невелик (малые амплитуды), то можно считать, что возвращающая сила направлена по радиусу окружности , т. е, равна центростремительной силе:

С другой стороны, из подобия треугольников и следует, что . Так как , то отсюда

Приравняв оба выражения друг другу, мы получаем для скорости обращения

Наконец, подставив это в выражение периода , находим

Итак, период математического маятника зависит только от ускорения свободного падения и от длины маятника , т. е. расстояния от точки подвеса до центра тяжести груза. Из полученной формулы следует, что период маятника не зависит от его массы и от амплитуды (при условии, что она достаточно мала). Другими словами, мы получили путем расчета те основные законы, которые были установлены ранее из наблюдений.

Но наш теоретический вывод дает нам больше: он позволяет установить количественную зависимость между периодом маятника, его длиной и ускорением свободного падения. Период математического маятника пропорционален корню квадратному из отношения длины маятника к ускорению свободного падения. Коэффициент пропорциональности равен .

На зависимости периода маятника от ускорения свободного падения основан очень точный способ определения этого ускорения. Измерив длину маятника и определив из большого числа колебаний период , мы можем вычислить с помощью полученной формулы . Этот способ широко используется на практике.

Известно (см. том I, §53), что ускорение свободного падения зависит от географической широты места (на полюсе , а на экваторе ). Наблюдения над периодом качаний некоторого эталонного маятника позволяют изучить распределение ускорение свободного падения по широте. Метод этот настолько точен, что с его помощью можно обнаружить и более тонкие различия в значении на земной поверхности. Оказывается, что даже на одной параллели значения в разных точках земной поверхности различно. Эти аномалии в распределении ускорения свободного падения связаны с неравномерной плотностью земной коры. Они используются для изучении распределения плотности, в частности для обнаружения залегания в толще земной коры каких-либо полезных ископаемых. Обширные гравиметрические изменения, позволившие судить о залегании плотных масс, были выполнены в СССР в области так называемой Курской магнитной аномалии (см. том II, § 130) под руководством советского физика Петра Петровича Лазарева. В соединении с данными об аномалии земного магнитного поля эти гравиметрические данные позволили установить распределение залегания железных масс, обусловливающих Курскую магнитную и гравитационную аномалии.

Определение

Математический маятник - это частный случай физического маятника, масса которого находится в одной точке.

Обычно математическим маятником считают маленький шарик (материальную точку), имеющий большую массу, подвешенный на длинной нерастяжимой нити (подвесе). Это идеализированная система, которая совершает колебания под воздействием силы тяжести. Только для углов порядка 50-100 математический маятник является гармоническим осциллятором, то есть совершает гармонические колебания.

Изучая качание паникадила на длинной цепи Галилей изучал свойства математического маятника. Он понял, что период колебаний данной системы не зависит от амплитуды при малых углах отклонения.

Формула для периода колебаний математического маятника

Пусть точка подвеса маятника неподвижна. Груз, подвешенный к нити маятника, движется по дуге окружности (рис.1(a)) с ускорением, на него действует некоторая возвращающая сила ($\overline{F}$). Данная сила изменяется при движении груза. В результате чего расчет движения становится сложным. Введем некоторые упрощения. Пусть маятник совершает колебания не в плоскости, а описывает конус (рис.1 (b)). Груз в этом случае перемещается по окружности. Период интересующих нас колебаний будет совпадать с периодом конического движения груза. Период обращения конического маятника по окружности равен времени, которое тратит груз на один виток по окружности:

где $L$ - длина окружности; $v$ - скорость движения груза. Если углы отклонения нити от вертикали малые (небольшие амплитуды колебаний) то полагают, что возвращающая сила ($F_1$) направлена по радиусу окружности, которую описывает груз. Тогда эта сила равна центростремительной силе:

Рассмотрим подобные треугольники: AOB и DBC (рис.1 (b)).

Приравниваем правые части выражений (2) и (3), выражаем скорость движения груза:

\[\frac{mv^2}{R}=mg\frac{R}{l}\ \to v=R\sqrt{\frac{g}{l}}\left(4\right).\]

Полученную скорость подставим в формулу (1), имеем:

\ \

Из формулы (5) мы видим, что период математического маятника зависит только от длины его подвеса (расстояния от точки подвеса до центра тяжести груза) и ускорения свободного падения. Формулу (5) для периода математического маятника называют формулой Гюйгенса, она выполняется, когда точка подвеса маятника не движется.

Используя зависимость периода колебаний математического маятника от ускорения свободного падения, определяют величину данного ускорения. Для этого измеряют длину маятника, рассматривая большое количество колебаний, находят период $T$, затем вычисляют ускорение свободного падения.

Примеры задач с решением

Пример 1

Задание. Как известно, величина ускорения свободного падения зависит от широты. Каково ускорение свободного падения на широте Москвы, если период колебаний математического маятник длиной $l=2,485\cdot {10}^{-1}$м равен T=1 c?\textit{}

Решение. За основу решения задачи примем формулу периода математического маятника:

Выразим из (1.1) ускорение свободного падения:

Вычислим искомое ускорение:

Ответ. $g=9,81\frac{м}{с^2}$

Пример 2

Задание. Каким будет период колебаний математического маятника, если точка его подвеса движется вертикально вниз 1) с постоянной скоростью? 2) с ускорением $a$? Длина нити этого маятника равна $l.$

Решение. Сделаем рисунок.

1) Период математического маятника, точка подвеса которого движется равномерно, равен периоду маятника с неподвижной точкой подвеса:

2) Ускорение точки подвеса маятника можно рассматривать как появление дополнительной силы, равной $F=ma$, которая направлена против ускорения. То есть, если ускорение направлено вверх, то дополнительная сила направлена вниз, значит, она складывается с силой тяжести ($mg$). Если точка подвеса движется с ускорением, направленным вниз, то дополнительная сила вычитается из силы тяжести.

Период математического маятника, который совершает колебания и у которого точка подвеса движется с ускорением, найдем как:

Ответ. 1) $T_1=2\pi \sqrt{\frac{l}{g}}$; 2) $T_1=2\pi \sqrt{\frac{l}{g-a}}$

Loading...Loading...