Как вычисляется работа в термодинамическом процессе. Работа в термодинамике

Наука, изучающая тепловые явления - это термодинамика. Физика рассматривает ее как один из своих разделов, который позволяет сделать определенные выводы, основываясь на представлении вещества в виде молекулярной системы.

Термодинамика, определения которой строятся на фундаменте фактов, полученных опытным путем, не использует накопленные знания о внутреннем Однако в некоторых случаях данная наука пользуется молекулярно-кинетическими моделями, чтобы наглядно проиллюстрировать свои заключения.

Опора термодинамики - общие закономерности процессов, происходящих при изменении а также свойства макроскопической системы, которая рассматривается в состоянии баланса. Наиболее значимым явлением, происходящим в комплексе веществ, является выравнивание температурных характеристик всех его частей.

Наиболее важным термодинамическим понятием служит которой обладает любое тело. Она заключена в самом элементе. Молекулярно-кинетической трактовкой внутренней энергии является величина, представляющая собой сумму кинетической активности молекул и атомов, а также потенциала их взаимодействия между собой. Отсюда вытекает закон, открытый Джоулем. Его подтверждением явились множественные эксперименты. Они обосновали тот факт, что, в частности, обладает внутренней энергией, складывающейся из кинетической активности всех его частиц, которые находятся в хаотичном и беспорядочном движении под воздействием тепла.

Работа в термодинамике изменяет активность тела. Воздействие сил, влияющих на внутреннюю энергию системы, может иметь как положительное, так и отрицательное значение. В тех случаях, когда, например, газообразное вещество подвергается процессу сжатия, который производится в цилиндрической емкости под давлением поршня, силы, действующие на него, совершают некую работу, характеризующуюся положительной величиной. Одновременно происходят противоположные явления. Газ совершает над воздействующим на него поршнем отрицательную работу той же величины. Действия, производимые веществом, находятся в прямой зависимости от площади имеющегося поршня, его перемещения, а также давления тела. Работа в термодинамике, которая совершается газом, является положительной при его расширении, а при сжатии - отрицательной. Величина этого действия находится в прямой зависимости от пути, по которому был совершен переход вещества из начального положения в конечное.

Работа в термодинамике твердых и жидких тел отличается тем, что они весьма незначительно изменяют объем. В связи с этим воздействием сил зачастую пренебрегают. Однако результатом совершения над веществом работы может явиться изменение его внутренней активности. Например, при сверлении металлических деталей происходит повышение их температуры. Этот факт и является свидетельством роста внутренней энергии. При этом данный процесс является необратимым, так как его невозможно провести в противоположном направлении.
Работа в термодинамике относится к основным ее Ее измерение производится в Джоулях. Величина данного показателя находится в прямой зависимости от того пути, по которому система переходит из начального состояния в конечное. Это действие не относится к функциям состояния тела. Оно является функцией самого процесса.

Работа в термодинамике, определение которой производится по имеющимся формулам, является разностью между количеством подведенного и отведенного тепла в периоде замкнутого цикла. Величина данного показателя зависит от вида процесса. Если система отдает свою энергию, то это означает, что совершается положительнее действие, а если получает - отрицательное.

«Физика - 10 класс»

В результате каких процессов может изменяться внутренняя энергия?
Как определяется работа в механике?


Работа в механике и термодинамике.


В механике работа определяется как произведение модуля силы, модуля перемещения точки её приложения и косинуса угла между векторами силы и перемещения. При действии силы на движущееся тело работа этой силы равна изменению его кинетической энергии.

Работа в термодинамике определяется так же, как и в механике, но она равна не изменению кинетической энергии тела, а изменению его внутренней энергии.


Изменение внутренней энергии при совершении работы.


Почему при сжатии или расширении тела меняется его внутренняя энергия? Почему, в частности, нагревается воздух при накачивании велосипедной шины?

Причина изменения температуры газа в процессе его сжатия состоит в следующем: при упругих соударениях молекул газа с движущимся поршнем изменяется их кинетическая энергия .

При сжатии или расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.

Так, при движении навстречу молекулам газа поршень во время столкновений передаёт им часть своей механической энергии, в результате чего увеличивается внутренняя энергия газа и он нагревается. Поршень действует подобно футболисту, встречающему летящий на него мяч ударом ноги. Нога футболиста сообщает мячу скорость, значительно большую той, которой он обладал до удара.

И наоборот, если газ расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются, в результате чего газ охлаждается. Так же действует и футболист, для того чтобы уменьшить скорость летящего мяча или остановить его, - нога футболиста движется от мяча, как бы уступая ему дорогу.

Вычислим работу силы , действующей на газ со стороны внешнего тела (поршня), в зависимости от изменения объёма на примере газа в цилиндре под поршнем (рис. 13.1), при этом давление газа поддерживается постоянным. Сначала вычислим работу, которую совершает сила давления газа, действуя на поршень с силой ". Если поршень поднимается медленно и равномерно, то, согласно третьему закону Ньютона, = ". В этом случае газ расширяется изобарно.

Модуль силы, действующей со стороны газа на поршень, равен F" = pS, где р - давление газа, а S - площадь поверхности поршня. При подъёме поршня на малое расстояние Δh = h 2 - h 1 работа газа равна:

А" = F"Δh = pS(h 2 - h 1) = p(Sh 2 - Sh 1). (13.2)

Начальный объём, занимаемый газом, V 1 = Sh 1 , а конечный V 2 = Sh 2 . Поэтому можно выразить работу газа через изменение объёма ΔV = (V 2 - V 1):

А" = p(V 2 - V 1) = pΔV > 0. (13.3)

При расширении газ совершает положительную работу, так как направление силы и направление перемещения поршня совпадают.

Если газ сжимается, то формула (13.3) для работы газа остаётся справедливой. Но теперь V 2 < V 1 , и поэтому А < 0.

Работа А, совершаемая внешними телами над газом, отличается от работы А" самого газа только знаком:

А = -А" = -pΔV. (13.4)

При сжатии газа, когда ΔV = V 2 - V 1 < 0, работа внешней силы оказывается положительной. Так и должно быть: при сжатии газа направления силы и перемещения точки её приложения совпадают.

Если давление не поддерживать постоянным, то при расширении газ теряет энергию и передаёт её окружающим телам: поднимающемуся поршню, воздуху и т. д. Газ при этом охлаждается. При сжатии газа, наоборот, внешние тела передают ему энергию и газ нагревается.

Геометрическое истолкование работы. Работе А" газа для случая постоянного давления можно дать простое геометрическое истолкование.

При постоянном давлении график зависимости давления газа от занимаемого им объёма - прямая, параллельная оси абсцисс (рис. 13.2). Очевидно, что площадь прямоугольника abdc, ограниченная графиком рх = const, осью V и отрезками аb и cd равными давлению газа, численно равна работе, определяемой формулой (13.3):

А" = p1(V2 - V2) = |ab| |ас|.

В общем случае давление газа не остаётся неизменным. Например, при изотермическом процессе оно убывает обратно пропорционально объёму (рис. 13.3). В этом случае для вычисления работы нужно разделить общее изменение объёма на малые части и вычислить элементарные (малые) работы, а потом все их сложить. Работа газа по-прежнему численно равна площади фигуры, ограниченной графиком зависимости р от V, осью V и отрезками аb и cd, длина которых численно равна давлениям p 1 р 2 в начальном и конечном состояниях газа.

Работа в механике и термодинамике. В механике работа определяется как произведение модулей силы и перемещения, умноженное на косинус угла между ними. Работа совершрется при действии силы на движущееся тело и равна изменению кинетической энергии тела.

В термодинамике движение тела как целого не рассматривается и речь идет о перемещении частей макроскопического тела друг относительно друга. В результате меняется объем

тела, а его скорость остается равной нулю. Следовательно, работа в термодинамике, определяемая так же, как и в механике, равна изменению не кинетической энергии тела, а его внутренней энергии.

Изменение внутренней энергии при совершении работы. Почему при сжатии или расширении меняется внутренняя энергия тела? Почему, в частности, нагревается воздух при накачивании велосипедной шины?

Причина изменения температуры в процессе сжатия газа состоит в следующем: при упругих соударениях молекул с движущимся поршнем их кинетическая энергия изменяется. При движении навстречу молекулам поршень передает им во время столкновений часть своей механической энергии, в результате чего газ нагревается. Поршень действует подобно футболисту, встречающему летящий мяч ударом ноги и сообщающему мячу скорость, значительно большую той, которой он обладал до удара.

Если газ, напротив, расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются, в результате чего газ охлаждается. Так же действует футболист, для того чтобы уменьшить скорость летящего мяча или остановить его; нога футболиста движется от мяча, как бы уступая ему дорогу.

При сжатии или расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.

Вычисление работы. Вычислим работу в зависимости от изменения объема на примере газа в цилиндре под поршнем (рис. 39). Проще всего вначале вычислить не работу силы действующей на газ со стороны внешнего тела (поршня), а работу, которую совершает сам газ, действуя на поршень с силой Согласно третьему закону Ньютона

Модуль силы, действующей со стороны газа на поршень, равен: где - давление газа, площадь поршня. Пусть газ расширяется и поршень смещается в направлении

силы малое расстояние Если перемещение мало, то давление газа можно считать постоянным.

Работа газа равна:

Эту работу можно выразить через изменение объема газа. Начальный объем а конечный Поэтому

где изменение объема газа.

При расширении газ совершает положительную работу, так как направление силы и направление перемещения поршня совпадают. В процессе расширения газ передает энергию окружающим телам.

Если газ сжимается, то формула (4.3) для работы газа остается справедливой. Но теперь и поэтому (рис. 40).

Работа А, совершаемая внешними телами над газом, отличается от работы газа А только знаком: так как сила действующая на газ, направлена против снлы а перемещение остается тем же самым. Поэтому работа внешних сил, действующих на газ, равна:

Знак минус указывает, что при сжатии газа, когда работа внешней силы положительна. Понятно, почему в этом случае при сжатии газа направления силы и перемещения совпадают. Совершая над газом положительную работу, внешние тела передают ему энергию. При расширении газа, наоборот, работа внешних тел отрицательна так как Теперь направления силы и перемещения противоположны.

Выражения (4.3) и (4.4) справедливы не только при сжатии или расширении газа в цилиндре, но и при малом изменении объема любой системы. Если процесс изобарный то эти формулы можно применять и для больших изменений объема.

Геометрическое истолкование работы. Работе А газа для случая постоянного давления можно дать простое геометрическое истолкование.

Построим график зависимости давления газа от объема (рис. 41). Здесь площадь прямоугольника ограниченная графиком осью V и отрезками

равными давлению газа, численно равна работе (4.3).

В общем случае при произвольном изменении объема газа давление не остается неизменным Например, при изотермическом процессе оно убывает обратно пропорционально объему (рис. 42). В этом случае для вычисления работы нужно разделить общее изменение объема на малые части, вычислить элементарные (малые) работы, а потом все их сложить. Работа газа по-прежнему будет численно равна площади фигуры, ограниченной графиком зависимости от V, осью V и отрезками равными давлениям в начальном и конечном состояниях.

1. От каких физических величин зависит внутренняя энергия тела?

2. Приведите примеры превращения механической энергии во внутреннюю и обратно в технике и быту. 3. Чему равна внутренняя энергия идеального одноатомного газа? 4. Моль какого газа - водорода или гелия - имеет большую внутреннюю энергию при одинаковой температуре газов? 5. Почему газ при сжатии нагревается? 6. Чему равна работа, совершаемая внешними силами при сжатии и расширении тел?

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся.
Еще один отличный день для практических занятий по физике. Сегодня мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая потоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро )

Масс у , в свою очередь, можно вычислить, как произведение плотности и объема .

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

Изотермический процесс протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

протекает при поcтоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Внутренняя энергия одноатомного и двухатомного идеального газа

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Тепловые машины. Формула КПД в термодинамике

Тепловая машина , в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вно вь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы – помните о студенческом сервисе , специалисты которого готовы в любой момент прийти на выручку.

РАБОТА (в термодинамике) РАБОТА (в термодинамике)

РАБО́ТА, в термодинамике:
1) одна из форм обмена энергией (наряду с теплотой) термодинамической системы (физического тела) с окружающими телами;
2) количественная характеристика преобразования энергии в физических процессах, зависит от вида процесса; работа системы положительна, если она отдает энергию, и отрицательна, если получает.


Энциклопедический словарь . 2009 .

Смотреть что такое "РАБОТА (в термодинамике)" в других словарях:

    работа (в термодинамике) - работа Энергия, передаваемая одним телом другому, не связанная с переносом теплоты и (или) вещества. [Сборник рекомендуемых терминов. Выпуск 103. Термодинамика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики… … Справочник технического переводчика

    1) одна из форм обмена энергией (наряду с теплотой) термодинамической системы (физического тела) с окружающими телами; 2) количественная характеристика преобразования энергии в физических процессах, зависит от вида процесса; работа системы… … Энциклопедический словарь

    Силы, мера действия силы, зависящая от численной величины и направления силы и от перемещения точки её приложения. Если сила F численно и по направлению постоянна, а перемещение М0М1 прямолинейно (рис. 1), то P. A = F s cosa, где s=M0M1, a угол… … Физическая энциклопедия

    - (в термодинамике), 1) одна из форм обмена энергией (наряду с теплотой) термодинамической системы (физические тела) с окружающими телами; 2) количественная характеристика преобразования энергии в физических процессах; зависит от вида процесса.… … Современная энциклопедия

    В термодинамике:..1) одна из форм обмена энергией (наряду с теплотой) термодинамической системы (физического тела) с окружающими телами;..2) количественная характеристика преобразования энергии в физических процессах, зависит от вида процесса;… … Большой Энциклопедический словарь

    Силы, мера действия силы, зависящая от численной величины и направления силы и от перемещения точки её приложения. Если сила F численно и по направлению постоянна, а перемещение M0M1 прямолинейно (рис. 1), то P. A = F․s․cosα, где s = M0M1 … Большая советская энциклопедия

    РАБОТА - (1) скалярная физ. величина, характеризующая преобразование (см.) из одной формы в др., происходящее в рассматриваемом физ. процессе. Единица работы в СИ (см.). Р. всех внутренних и внешних сил, действующих на механическую систему, равна… … Большая политехническая энциклопедия

    1) величина, характеризующая преобразование энергии из одной формы в другую, происходящее в рассматриваемом физ. процессе. Напр., Р. всех внеш. и внутр. сил, действующих на механич. систему, равна изменению кинетической энергии системы.… … Большой энциклопедический политехнический словарь

    В термодинамике, 1) одна из форм обмена энергией (наряду с теплотой) термодинамич. системы (физ. тела) с окружающими телами; 2) количеств. характеристика преобразования энергии в физ. процессах, зависит от вида процесса; Р. системы положительна,… … Естествознание. Энциклопедический словарь

    Работа Размерность L2MT−2 Единицы измерения СИ Дж СГС … Википедия

Книги

  • Комплект таблиц. Физика. Термодинамика (6 таблиц) , . Учебный альбом из 6 листов. Внутренняя энергия. Работа газа в термодинамике. Первое начало термодинамики. Второе начало термодинамики. Адиабатный процесс. Цикл Карно. Арт. 2-090-661. 6…
  • Основы моделирования молекулярной динамики , Галимзянов Б.Н.. В настоящем учебном пособии представлен базовый материал, необходимый для овладения знаниями и первичными навыками по компьютерному моделированию молекулярной динамики. Пособие включает в…
Loading...Loading...