Что называют излучением. Польза и вред радиоактивного излучения

О том, какого мнения современная наука придерживается относительно влияние электромагнитного излучения на организм человека и какие приборы являются самыми значимыми источниками такого излучения, рассказывает

Александр Кукса

Эколог, технический директор независимой экологической экспертизы Тестэко

Влияние электромагнитных полей на организм человека изучается со времён СССР, ещё в 60х годах прошлого века оно было подтверждено, тогда же было введено и понятие «радиоволновая болезнь» и разработаны Предельно Допустимые Уровни (ПДУ). Исследования в этой области продолжаются и сейчас. Тем не менее, эффект и последствия от воздействия ЭМИ очень зависит от каждого конкретного человека, роста, веса, пола, состояния здоровья, иммунитета и даже диеты! Ровно так же как и от интенсивности поля, частоты и продолжительности воздействия.

Самыми значимыми источниками электромагнитного поля являются те приборы, которыми мы пользуемся чаще всего и которые располагаются к нам ближе всего. Это:

  • мобильные телефоны
  • персональные компьютеры (и ноутбуки, и планшеты, и стационарные компьютеры)
  • из бытовой техники вне конкуренции СВЧ-печи

Устройства связи дают электромагнитное поле в момент приёма/передачи информации, а из-за того, что они расположены к нам на минимальном расстоянии (например, мобильный телефон находится вообще вплотную к голове), то и значения плотности потока ЭМ поля будет максимальным.

У СВЧ печей есть срок эксплуатации, если она новая и исправная, то излучения в момент работы снаружи печи практически не будет, если же поверхность загрязнена, неплотно прилегает дверца, то защита печи может не останавливать всё излучение и поля будут «пробивать» даже стены кухни! И давать превышение по всей квартире или ближайшим комнатам.

Как правило, чем мощнее потребитель тока, чем он ближе к нам расположен, чем дольше он на нас воздействует и чем менее защищён (экранирован), тем сильнее будут проявляться негативные последствия. Потому что интенсивность излучения от каждого конкретного источника тоже будет разная.

Негативное влияние на организм человека

Чем дольше мы находимся в электромагнитном поле, тем больше шансы на появление каких-либо последствий. Опасность в том, что без специального оборудования, мы никогда и не узнаем, подвергаемся ли мы прямо сейчас воздействию ЭМ-поля или нет. Разве что совсем в критических ситуациях, когда уже и волосы от статических зарядов начинают шевелиться.

Воздействие ЭМ полей может вызывать:

  • головокружения
  • головные боли
  • бессонницу
  • усталость
  • ухудшение концентрации внимания
  • депрессивное состояние
  • повышенную возбудимость
  • раздражительность
  • резкие перепады настроения
  • сильные скачки АД
  • слабость
  • нарушения работы сердечной мышцы
  • ухудшение проводимости миокарда
  • аритмию

Опасность заключается ещё и в том, что заметив у себя любой из описанных выше признаков, человек станет подозревать всё что угодно, но не электромагнитные поля, вызванные, например, скрытой проводкой, идущей вдоль спального места.

Правила безопасности при воздействии электромагнитного излучения на организм человека

Самая качественная защита от ЭМ излучения – это расстояние.

Плотность излучения с расстоянием падает в разы. У каждого источника достаточно ограниченный радиус действия полей, поэтому правильное планирование мест для отдыха/досуга, работы и сна уже залог Вашего здоровья, однако, не стоит забывать и про то, что любой обесточенный источник ЭМ-полей перестаёт таковым являться.

Поэтому не забывайте выключать из сети неиспользуемые приборы, не располагайте рядом с головой мощные источники ЭМИ, следите за состоянием бытовой техники и читайте инструкции по правильной эксплуатации бытовых приборов.

Чем электроника дороже - тем она безопаснее?

В теории качественная бытовая техника будет являться более безвредной, так как чем крупнее и «именитее» производитель, тем больше он будет заботиться о своём имидже и, соответственно, сертифицировать все свои продукты как можно более ответственнее. Но это, понятное дело, сказывается и на стоимости оборудования.

Однако стоит учитывать то, что это касается только новой техники, не подвергавшейся физическому воздействию, ремонтам, при правильной эксплуатации, расположении и прочее. Если хоть что-то было нарушено, то интенсивность излучения может измениться в разы.

Какое мнение сейчас принято по данному вопросу в научном сообществе?

Вред электромагнитного излучения для здоровья человека никем не отрицается. Но споры и обсуждения продолжаются касательно предельно допустимых уровней, так как провести однозначно линию, разграничивающую вред и пользу для организма, очень тяжело. В конце концов, есть и лечебные источники ЭМ-полей и диагностическое оборудование.

После аварии на АЭС« Фукусима» мир захлестнула очередная волна панической радиофобии. На Дальнем Востоке из продажи исчез йод, а производители и продавцы дозиметров не только распродали все имевшиеся на складах приборы, но и собрали предзаказы на полгода-год вперед. Но так ли страшна радиация? Если вы каждый раз вздрагиваете при этом слове, статья написана для вас.

Игорь Егоров

Что же такое радиация? Так называют различные виды ионизирующего излучения, то есть того, которое способно отрывать электроны от атомов вещества. Три основных вида ионизирующего излучения принято обозначать греческими буквами альфа, бета и гамма. Альфа-излучение — это поток ядер гелия-4 (практически весь гелий из воздушных шариков когда-то был альфа-излучением), бета — поток быстрых электронов (реже позитронов), а гамма — поток фотонов высокой энергии. Еще один вид радиации — поток нейтронов. Ионизирующее излучение (за исключением рентгеновского) — результат ядерных реакций, поэтому ни мобильные телефоны, ни микроволновые печи не являются его источниками.

Заряженное оружие

Из всех видов искусства для нас важнейшим, как известно, является кино, а из видов радиации — гамма-излучение. Оно обладает очень высокой проникающей способностью, и теоретически никакая преграда не способна защитить от него полностью. Мы постоянно подвергаемся гамма-облучению, оно приходит к нам сквозь толщу атмосферы из космоса, пробивается сквозь слой грунта и стены домов. Обратная сторона такой всепроникаемости — относительно слабое разрушающее действие: из большого количества фотонов лишь малая часть передаст свою энергию организму. Мягкое (низкоэнергетическое) гамма-излучение (и рентгеновское) в основном взаимодействует с веществом, выбивая из него электроны за счет фотоэффекта, жесткое — рассеивается на электронах, при этом фотон не поглощается и сохраняет заметную часть своей энергии, так что вероятность разрушения молекул в таком процессе значительно меньше.


Бета-излучение по своему воздействию близко к гамма-излучению — оно тоже выбивает электроны из атомов. Но при внешнем облучении оно полностью поглощается кожей и ближайшими к коже тканями, не доходя до внутренних органов. Тем не менее это приводит к тому, что поток быстрых электронов передает облученным тканям значительную энергию, что может привести к лучевым ожогам или спровоцировать, например, катаракту.

Альфа-излучение несет значительную энергию и большой импульс, что позволяет ему выбивать электроны из атомов и даже сами атомы из молекул. Поэтому причиненные им «разрушения» значительно больше — считается, что, передав телу 1 Дж энергии, альфа-излучение нанесет такой же ущерб, как 20 Дж в случае гамма- или бета-излучения. К счастью, проникающая способность альфа-частиц чрезвычайно мала: они поглощаются самым верхним слоем кожи. Но при попадании внутрь организма альфа-активные изотопы крайне опасны: вспомните печально известный чай с альфа-активным полонием-210, которым был отравлен Александр Литвиненко.


Нейтральная опасность

Но первое место в рейтинге опасности, несомненно, занимают быстрые нейтроны. Нейтрон не имеет электрического заряда и поэтому взаимодействует не с электронами, а с ядрами — только при «прямом попадании». Поток быстрых нейтронов может пройти через слой вещества в среднем от 2 до 10 см без взаимодействия с ним. Причем в случае тяжелых элементов, столкнувшись с ядром, нейтрон лишь отклоняется в сторону, почти не теряя энергии. А при столкновении с ядром водорода (протоном) нейтрон передает ему примерно половину своей энергии, выбивая протон с его места. Именно этот быстрый протон (или, в меньшей степени, ядро другого легкого элемента) и вызывает ионизацию в веществе, действуя подобно альфа-излучению. В результате нейтронное излучение, подобно гамма-квантам, легко проникает внутрь организма, но там почти полностью поглощается, создавая быстрые протоны, вызывающие большие разрушения. Кроме того, нейтроны — это то самое излучение, которое вызывает наведенную радиоактивность в облучаемых веществах, то есть превращает стабильные изотопы в радиоактивные. Это крайне неприятный эффект: скажем, с транспортных средств после пребывания в очаге радиационной аварии альфа-, бета- и гамма-активную пыль можно смыть, а вот от нейтронной активации избавиться невозможно — излучает уже сам корпус (на этом, кстати, и был основан поражающий эффект нейтронной бомбы, активировавшей броню танков).

Доза и мощность

При измерении и оценке радиации используется такое количество различных понятий и единиц, что обычному человеку немудрено и запутаться.
Экспозиционная доза пропорциональна количеству ионов, которые создает гамма- и рентгеновское излучения в единице массы воздуха. Ее принято измерять в рентгенах (Р).
Поглощенная доза показывает количество энергии излучения, поглощенное единицей массы вещества. Ранее ее измеряли в радах (рад), а сейчас — в греях (Гр).
Эквивалентная доза дополнительно учитывает разницу в разрушительной способности разных типов радиации. Ранее её измеряли в «биологических эквивалентах рада» — бэрах (бэр), а сейчас — в зивертах (Зв).
Эффективная доза учитывает ещё и различную чувствительность разных органов к радиации: например, облучать руку куда менее опасно, чем спину или грудь. Ранее измерялась в тех же бэрах, сейчас — в зивертах.
Перевод одних единиц измерения в другие не всегда корректен, но в среднем принято считать, что экспозиционная доза гамма-излучения в 1 Р принесёт организму такой же вред, как эквивалентная доза 1/114 Зв. Перевод рад в греи и бэров в зиверты очень прост: 1 Гр = 100 рад, 1 Зв = 100 бэр. Для перевода поглощённой дозы в эквивалентную используют т.н. «коэффициент качества излучения», равный 1 для гамма- и бета-излучения, 20 для альфа-излучения и 10 для быстрых нейтронов. Например, 1 Гр быстрых нейтронов = 10 Зв = 1000 бэр.
Природная мощность эквивалентной дозы (МЭД) внешнего облучения обычно составляет 0,06 — 0,10 мкЗв/ч, но в некоторых местах может быть и менее 0,02 мкЗв/ч или более 0,30 мкЗв/ч. Уровень более 1,2 мкЗв/ч в России официально считается опасным, хотя в салоне самолёта во время перелёта МЭД может многократно превышать это значение. А экипаж МКС подвергается облучению с мощностью примерно 40 мкЗв/ч.

В природе нейтронное излучение весьма незначительно. По сути, риск подвергнуться ему существует лишь при ядерной бомбардировке или серьезной аварии на АЭС с расплавлением и выбросом в окружающую среду большей части активной зоны реактора (да и то лишь в первые секунды).

Газоразрядные счетчики

Радиацию можно обнаружить и измерить с помощью различных датчиков. Самые простые из них — ионизационные камеры, пропорциональные счетчики и газоразрядные счетчики Гейгера-Мюллера. Они представляют собой тонкостенную металлическую трубку с газом (или воздухом), вдоль оси которой натянута проволочка — электрод. Между корпусом и проволочкой прикладывают напряжение и измеряют протекающий ток. Принципиальное отличие между датчиками лишь в величине прикладываемого напряжения: при небольших напряжениях имеем ионизационную камеру, при больших — газоразрядный счетчик, где-то посередине — пропорциональный счетчик.


Сфера из плутония-238 светится в темноте, подобно одноваттной лампочке. Плутоний токсичен, радиоактивен и невероятно тяжел: один килограмм этого вещества умещается в кубике со стороной 4 см.

Ионизационные камеры и пропорциональные счетчики позволяют определить энергию, которую передала газу каждая частица. Счетчик Гейгера-Мюллера только считает частицы, зато показания с него очень легко получать и обрабатывать: мощность каждого импульса достаточна, чтобы напрямую вывести ее на небольшой динамик! Важная проблема газоразрядных счетчиков — зависимость скорости счета от энергии излучения при одинаковом уровне радиации. Для ее выравнивания используют специальные фильтры, поглощающие часть мягкого гамма- и всё бета-излучение. Для измерения плотности потока бета- и альфа-частиц такие фильтры делают съемными. Кроме того, для повышения чувствительности к бета- и альфа-излучению применяются «торцевые счетчики»: это диск с донышком в качестве одного электрода и вторым спиральным проволочным электродом. Крышку торцевых счетчиков делают из очень тонкой (10−20 мкм) пластинки слюды, через которую легко проходит мягкое бета-излучение и даже альфа-частицы.

Сегодня все больше людей начинают регулярно пользоваться компьютерами, поэтому многие задаются вопросом, есть ли вред от использования компьютера. Компьютер, как и другой электрический прибор, испускает в окружающую среду электромагнитное излучение.

Но насколько же вредно для здоровья человека это электромагнитное излучение от компьютера?

Излучение от персонального компьютера распространяется в виде электромагнитных волн высокой частоты. Данные волны генерируются практически всеми элементами ПК. Многие специалисты в области медицины доказывают, что данное компьютерное электромагнитное излучение оказывает негативное влияние на состояние организма. Электромагнитное излучение представляет собой распространяющееся в пространстве возмущение электромагнитного поля, которое было порождено определенным источником. Определенные электромагнитные волны могут негативно воздействовать на организм человека.

Излучение бывает разной частоты, для чего наиболее вредным считается высокочастотное радиоизлучение.

Наиболее вредным считается радиоизлучение от ЭЛТ монитора, мощность воздействия может достигать несколько теров. Но мониторы в основе, которых лежит электронно-лучевая трубка, уже уходят в прошлое. Негативное воздействие заключается в принципе работы подобного монитора. Внутри находится кинескоп, внутри, которого разгоняются электроны и ударяются об обратную сторону экрана. Именно этот процесс порождает достаточно мощное . Особенно сильное воздействие такие мониторы оказывают на зрение, поэтому долго работать за такими ПК не рекомендуется.

Жидкокристаллические или плазменные мониторы никакого вреда в виде излучения не несут, так как в процессе их работы генерация мощных электромагнитных полей исключена. Такие мониторы могут нанести вред только зрению, но облучение здесь не причем. Вред заключается в том, что в процессе долгой работы глаза слишком сильно напрягаются, поэтому рекомендуется делать перерывы в процессе работы.

В современном компьютере наиболее интенсивное радиоизлучение генерирует центральный процессор. В настольных компьютерах данный элемент находится на определенном расстоянии от пользователя, поэтому существенно вреда он не нанесет. В случае с ноутбуком центральный процессор находится в непосредственной близости от человека, поэтому воздействие излучения становится сильнее.

Многие замечали, что в комнате, где долго работал компьютер, воздух становится каким-то тяжелым. Такой эффект проявляется из-за воздействия на воздух ионизирующего излучения.

В процессе работы ПК системные платы наэлектризуют воздух из-за чего молекулы, из которых состоит окружающий нас воздух ионизируется. Ионизированный воздух при определенных стечениях обстоятельств (к примеру, долгое пребывание в помещении с наэлектризованным воздухом) может нанести вред здоровью.

Защиты от излучения

Определенный вред от компьютера все же есть, поэтому нелишней будет защита от электромагнитного излучения персонального компьютера. В случае если, ПК оборудован монитором, который работает на основе электронно-лучевой трубки, необходимо работать за ПК так, чтобы между лицом и экраном было расстояние не менее 1 метра, так излучение от ЭЛТ монитора не будет оказывать слишком сильного влияния на организм.

В случае с настольным компьютером, системный блок, должен находиться как можно дальше от пользователя. Если в одном помещение работает несколько компьютеров (к примеру, в офисе) необходимо размещать так чтобы между компьютерами было не менее двух метров.

Если вы работаете за ноутбуком, то желательно не держать его на коленях. Это не только минимизирует влияние излучения, но обеспечит более эффективную вентиляцию корпуса. Работая за ноутбуком нужно ставить его на ровную поверхность, при этом также как в случае с настольным расстояние межу лицом пользователя монитором должно быть около одно метра.

Работая за ноутбуком длительное время, нужно периодически делать небольшие перерывы, это поможет отдохнуть глазам.

Защита от наэлектризованного воздуха

Для того чтобы защитится от наэлектризованного компьютером воздуха необходимо поставить в помещение ионизаторы воздуха. Это приборы, которые освежают воздух отрицательными ионами, благодаря этому дышать становится легко и приятно. Также ионизаторы помогают справиться с другими загрязнениями, к примеру, если в помещении курили, то данные приборы помогут убрать из помещения запах табака.

Также нужно почаще проветривать воздух в помещении, где установлен ПК. В случае с офисом необходимо наличие эффективно работающей вентиляции. Благодаря хорошей вентиляции воздух в помещении всегда будет чистый и свежий, даже несмотря на то, сколько компьютеров там работает.

Периферийные устройства

Ни один компьютер не обходится без периферийных устройств, мышки, клавиатуры, принтеры, все это нас окружает. В последнее время многие пользователи начали покупать себе беспроводные периферийные устройства. Они связываются с компьютером посредством электромагнитных волн, что вызывает дополнительное электромагнитное излучение.

Поэтому если вы не хотите сталкиваться с излишним облучением рекомендуется выбирать модели периферий, которые общаются с компьютером посредством кабеля, а не электромагнитных волн. Такие модели не только уменьшат вредное воздействие излучения, но избавят вас от необходимости постоянно заряжать аккумуляторы или покупать новые батарейки. Также проводные модели намного дешевле своих беспроводных аналогов.

Также достаточно сильное излучение исходит от источников бесперебойного питания. После проведенных замеров выяснилось, какое излучение они дают, оказалось что оно сравнимо по мощности только с излучением от мониторов, работающих на основе электронно-лучевой трубки. Поэтому если нет возможности отказаться от них, нужно спрятать эти устройства куда-нибудь подальше.

Помогают ли растения справиться с излучением?

Бытует мнение, что комнатные растения (особенно кактусы) способны защитить пользователя от излучения. Поэтому растения можно часто встретить рядом с персональными компьютерами. Растения не поглощают излучения от компьютера, поэтому не стоит обставлять рабочее место растениями, для того чтобы защитить себя от такого явления как электромагнитное поле. Небольшой цветок может лишь украсить рабочее место своим видом.

Вывод

Несмотря на то что компьютер излучает электромагнитные волны и наносить хоть и не существенный, но все же вред здоровью, он остается важным элементом жизни у многих людей. Многие пользователи понимают, что нельзя проводить слишком много времени за компьютером, но все же сидят перед монитором по несколько часов в день. Так как сегодня обойтись без ПК достаточно сложно.

В случае если почувствовали усталость, сонливость, головную боль, это может быть симптомом чрезмерного облучения. Лучшим решением в такой ситуации станет отдых. Нужно лишь встать с рабочего места на пару часов и все сразу пройдет.

Придерживаясь нескольких простых правил, можно минимизировать негативное влияние электромагнитного излучения на организм. Но стоит помнить, что, даже используя самые современные средства защиты невозможно себя полностью обезопасить от излучения.

Радиоактивное излучение (или ионизирующее) – это энергия, которая высвобождается атомами в форме частиц или волн электромагнитной природы. Человек подвергается такому воздействию как через природные, так и через антропогенные источники.

Полезные свойства излучения позволили успешно использовать его в промышленности, медицине, научных экспериментах и исследованиях, сельском хозяйстве и других областях. Однако с распространением применения этого явления возникла угроза здоровью людей. Малая доза радиоактивного облучения способна повысить риск приобретения серьёзных заболеваний.

Отличие радиации от радиоактивности

Радиация, в широком смысле, означает излучение, то есть распространение энергии в виде волн или частиц. Радиоактивные излучения делят на три вида:

  • альфа-излучение – поток ядер гелия-4;
  • бета-излучение – поток электронов;
  • гамма-излучение – поток высокоэнергетических фотонов.

Характеристика радиоактивных излучений основана на их энергии, пропускных свойствах и виде испускаемых частиц.

Альфа-излучение, которое представляет собой поток корпускул с положительным зарядом, может быть задержано толщей воздуха или одеждой. Этот вид практически не проникает через кожный покров, но при попадании в организм, например, через порезы, очень опасен и пагубно действует на внутренние органы.

Бета-излучение обладает большей энергией – электроны движутся с высокой скоростью, а их размеры малы. Поэтому данный вид радиации проникает через тонкую одежду и кожу глубоко в ткани. Экранировать бета-излучение можно при помощи алюминиевого листа в несколько миллиметров или толстой деревянной доски.

Гамма-излучение – это высокоэнергетическое излучение электромагнитной природы, которое обладает сильной проникающей способностью. Для защиты от него нужно использовать толстый слой бетона или пластину из тяжёлых металлов таких, как платина и свинец.

Феномен радиоактивности был обнаружен в 1896 году. Открытие сделал французский физик Беккерель. Радиоактивность – способность предметов, соединений, элементов испускать ионизирующее изучение, то есть радиацию. Причина явления заключается в нестабильности атомного ядра, которое при распаде выделяет энергию. Существует три вида радиоактивности:

  • естественная – характерна для тяжёлых элементов, порядковый номер которых больше 82;
  • искусственная – инициируется специально с помощью ядерных реакций;
  • наведённая – свойственна объектам, которые сами становятся источником радиации, если их сильно облучить.

Элементы, обладающие радиоактивностью, называют радионуклидами. Каждый из них характеризуется:

  • периодом полураспада;
  • видом испускаемой радиации;
  • энергией радиации;
  • и другими свойствами.

Источники радиации

Человеческий организм регулярно подвергается действию радиоактивного излучения. Приблизительно 80% ежегодно получаемого количества приходится на космические лучи. В воздухе, воде и почве содержатся 60 радиоактивных элементов, являющихся источниками естественной радиации. Основным природным источником излучения считается инертный газ радон, высвобождающийся из земли и горных пород. Радионуклиды также проникают в организм человека с пищей. Часть ионизирующего облучения, которому подвергаются люди, исходит от антропогенных источников, начиная от атомных генераторов электричества и ядерных реакторов до используемой для лечения и диагностики радиации. На сегодняшний день распространёнными искусственными источниками излучения являются:

  • медицинское оборудование (основной антропогенный источник радиации);
  • радиохимическая промышленность (добыча, обогащение ядерного топлива, переработка ядерных отходов и их восстановление);
  • радионуклиды, применяющиеся в сельском хозяйстве, лёгкой промышленности;
  • аварии на радиохимических предприятиях, ядерные взрывы, радиационные выбросы
  • строительные материалы.

Радиационное облучение по способу проникновения в организм делится на два типа: внутреннее и внешнее. Последнее характерно для распылённых в воздухе радионуклидов (аэрозоль, пыль). Они попадают на кожу или одежду. В таком случае источники радиации можно удалить, смыв их. Внешнее же облучение вызывает ожоги слизистых оболочек и кожных покровов. При внутреннем типе радионуклид попадает в кровоток, например, введением в вену или через раны, и удаляется путём экскреции или с помощью терапии. Такое облучение провоцирует злокачественные опухоли.

Радиоактивный фон существенно зависит от географического положения – в некоторых регионах уровень радиации может превышать средний в сотни раз.

Влияние радиации на здоровье человека

Радиоактивное излучение из-за ионизирующего действия приводит к образованию в организме человека свободных радикалов – химически активных агрессивных молекул, которые вызывают повреждение клеток и их гибель.

Особенно чувствительны к ним клетки ЖКТ, половой и кроветворной систем. Радиоактивное облучение нарушает их работу и вызывает тошноту, рвоту, нарушение стула, температуру. Воздействуя на ткани глаза, оно может привести к лучевой катаракте. К последствиям ионизирующего излучения также относят такие повреждения, как склероз сосудов, ухудшение иммунитета, нарушение генетического аппарата.

Система передачи наследственных данных имеет тонкую организацию. Свободные радикалы и их производные способны нарушать структуру ДНК – носителя генетической информации. Это приводит к возникновению мутаций, которые сказываются на здоровье последующих поколений.

Характер воздействия радиоактивного излучения на организм определяется рядом факторов:

  • вид излучения;
  • интенсивность радиации;
  • индивидуальные особенности организма.

Результаты радиоактивного излучения могут проявиться не сразу. Иногда его последствия становятся заметны через значительный промежуток времени. При этом большая однократная доза радиации более опасна, чем долговременное облучение малыми дозами.

Поглощённое количество радиации характеризуется величиной, называемой Зиверт (Зв).

  • Нормальный радиационный фон не превышает 0,2 мЗв/ч, что соответствует 20 микрорентгенам в час. При рентгенографии зуба человек получает 0,1 мЗв.
  • Смертельная разовая доза составляет 6-7 Зв.

Применение ионизирующих излучений

Радиоактивное излучение широко применяется в технике, медицине, науке, военной и атомной промышленности и других сферах человеческой деятельности. Явление лежит в основе таких устройств, как датчики задымления, генераторы электроэнергии, сигнализаторы обледенения, ионизаторы воздуха.

В медицине радиоактивное излучение используется в лучевой терапии для лечения онкологических заболеваний. Ионизирующая радиация позволила создать радиофармацевтические препараты. С их помощью проводят диагностические обследования. На базе ионизирующего излучения устроены приборы для анализа состава соединений, стерилизации.

Открытие радиоактивного излучения было без преувеличения революционным – применение этого явления вывело человечество на новый уровень развития. Однако это также стало причиной возникновения угрозы экологии и здоровью людей. В связи с этим поддержание радиационной безопасности является важной задачей современности.

Излучение

электромагнитное, процесс образования свободного электромагнитного поля. (Термин «И.» применяют также для обозначения самого свободного, т. е. излученного, электромагнитного поля - см. Максвелла уравнения , Электромагнитные волны .) Классическая физика рассматривает И. как испускание электромагнитных волн ускоренно движущимися электрическими зарядами (в частности, переменными токами). Классическая теория объяснила очень многие характерные черты процессов И., однако она не смогла дать удовлетворительного описания ряда явлений, особенно теплового излучения (См. Тепловое излучение) тел и И. микросистем (атомов и молекул). Такое описание оказалось возможным лишь в рамках квантовой теории И., показавшей, что И. представляет собой рождение Фотон ов при изменении состояния квантовых систем (например, атомов). Квантовая теория, более глубоко проникнув в природу И., одновременно указала и границы применимости классической теории: последняя часто является очень хорошим приближением при описании И., оставаясь, например, теоретической базой радиотехники (см. Излучение и прием радиоволн (См. Излучение и приём радиоволн)).

Классическая теория излучения (теория Максвелла). Физические причины существования свободного электромагнитного поля (т. е. поля самоподдерживающегося, независимого от возбудивших его источников) тесно связаны с тем, что электромагнитные волны распространяются от источников - зарядов и токов - не мгновенно, а с конечной скоростью c (в вакууме c ≅ 3·10 10 см/сек ). Если источник И. (например, переменный ток) в какой-то момент исчезнет, это не приведет к мгновенному исчезновению поля во всем пространстве: в отдалённых от источника точках оно исчезнет лишь через конечный промежуток времени. Из теории Максвелла вытекает, что изменение во времени электрического поля Е порождает магнитное поле Н , а изменение Н - вихревое электрическое поле. Отсюда следует, что самоподдерживающимся может быть лишь переменное электромагнитное поле, в котором обе его компоненты - Е и Н , непрерывно изменяясь, постоянно возбуждают одна другую.

В процессе И. электромагнитное поле уносит от источника энергию. Плотность потока энергии этого поля (количество энергии, протекающей за единицу времени через единичную площадку, ориентированную перпендикулярно направлению потока) определяется Пойнтинга вектор ом П , который пропорционален векторному произведению [ЕН ].

Интенсивность И. E изл есть энергия, уносимая полем от источника в единицу времени. Порядок её величины можно оценить, вычислив произведение площади замкнутой поверхности, охватывающей источник на среднее значение абсолютной величины плотности потока П на этой поверхности (П Излучение EH ). Обычно поверхность выбирают в форме сферы радиуса R (её площадь Излучение R ) и вычисляют E изл в пределе R → ∞:

(Е и Н - абсолютные величины векторов Е и Н ).

Для того чтобы эта величина не обращалась в ноль, т. е. чтобы вдали от источника существовало свободное электромагнитное поле, необходимо, чтобы и Е , и Н убывали не быстрее, чем 1/R . Это требование удовлетворяется, если источниками полей являются ускоренно движущиеся заряды. Вблизи от зарядов поля́ - кулоновские, пропорциональные 1/R 2 , но на больших расстояниях основную роль начинают играть некулоновские поля Е и Н , имеющие закон убывания 1/R .

И. движущегося заряда. Простейшим источником поля является точечный заряд. У покоящегося заряда И. отсутствует. Равномерно движущийся заряд (в пустоте) также не может быть источником И. Заряд же, движущийся ускоренно, излучает. Прямые вычисления на основе уравнений Максвелла показывают, что интенсивность его И. равна

где е - величина заряда, a - его ускорение. (Здесь и ниже используется Гауссова система единиц, см. СГС система единиц .) В зависимости от физической природы ускорения И. иногда приобретает особые наименования. Так, И., возникающее при торможении заряженных частиц в веществе в результате воздействия на них кулоновских полей ядер и электронов атомов, называется тормозным излучением (См. Тормозное излучение). И. заряженной частицы, движущейся в магнитном поле, искривляющем её траекторию, называется синхротронным излучением (См. Синхротронное излучение) (или магнитотормозным И.). Оно наблюдается, например, в циклических ускорителях заряженных частиц (См. Ускорители заряженных частиц).

В частном случае, когда заряд совершает гармоническое колебание, ускорение а по величине равно произведению отклонения заряда от положения равновесия (х = x 0 sin ωt , x 0 - амплитуда отклонения х ) на квадрат частоты ω. Усреднённая по времени t интенсивность И.

очень быстро (пропорционально ω 4) растет при увеличении частоты.

Электрическое дипольное И. Простейшей системой, которая может быть источником И., являются два связанных друг с другом колеблющихся, равных по величине, разноимённых заряда. Они образуют Диполь с переменным моментом. Если, например, заряды диполя совершают гармонические колебания навстречу друг другу, то дипольный электрический момент изменяется по закону d = d 0 sin ωt (ω - частота колебаний, d 0 - амплитуда момента d ). Усреднённая по времени t интенсивность И. такого диполя

И., расходящееся от колеблющегося диполя, неизотропно, т. е. энергия, испускаемая им в различных направлениях, неодинакова. Вдоль оси колебаний И. вообще отсутствует. Под прямым же углом к оси колебаний И. максимально. Для всех промежуточных направлений угловое распределение И. меняется пропорционально sin 2 ϑ, где угол ϑ отсчитывается от направления оси колебаний. Если направление оси колебаний диполя меняется со временем, то усреднённое угловое распределение становится более сложным.

Реальные излучатели, как правило, включают множество зарядов. Точный учёт всех деталей движения каждого из них при исследовании И. излишен (а зачастую и невозможен). Действительно, И. определяется значениями полей вдали от источника, т. е. там, где детали распределения зарядов (и токов) в излучателе сказываются слабо. Это позволяет заменять истинное распределение зарядов приближённым. Самым грубым, «нулевым» приближением является рассмотрение излучающей системы как одного заряда, по величине равного сумме зарядов системы. У электронейтральной системы, сумма зарядов которой равна нулю, И. в этом приближении отсутствует. В следующем, первом, приближении положительные и отрицательные заряды системы по отдельности мысленно «стягиваются» к центрам своего распределения. Для электронейтральной системы это означает мысленную замену её электрическим диполем, излучающим согласно (4). Такое приближение называется дипольным, а соответствующее И. - электрическим дипольным И.

Электрическое квадрупольное и высшие мультипольные И. Если у системы зарядов дипольное И. отсутствует, например из-за равенства дипольного момента нулю, то необходимо учитывать следующее приближение, в котором система зарядов - источник И. - рассматривается как Квадруполь , т. е. четырехполюсник. Простейший квадруполь - 2 диполя, имеющие равные по величине и противоположные по направлению моменты. Ещё более детальное описание излучающей системы зарядов даёт рассмотрение последующих приближений, в которых распределение зарядов описывается мультиполями (См. Мультиполь) (многополюсниками) высших порядков (диполь называется мультиполем 1-го, квадруполь - 2-го и т. д. порядков).

Важно отметить, что в каждом последующем приближении интенсивность И. примерно в (v /c ) 2 меньше, чем в предыдущем (если, конечно, последнее не отсутствует по каким-либо причинам). Если излучатель - нерелятивистский, т. е. все заряды имеют скорости, много меньшие, чем световая (v /c

Магнитное дипольное И. Кроме электрических диполей и высших мультиполей, источниками И. могут быть также магнитные диполи и мультиполи (как правило, основным является дипольное магнитное И.). Картина распределения магнитного поля на больших расстояниях от контура, по которому протекает ток, порождающий это поле, подобна картине распределения электрического поля вдали от электрического диполя. Аналог дипольного электрического момента - дипольный магнитный момент М - определяется силой тока I в контуре и его геометрией. Для плоского контура абсолютная величина момента М = (e /c ) IS , где S - площадь, охватываемая контуром. Формулы для интенсивности магнитного дипольного И. почти такие же, как и для электрического, только вместо электрического дипольного момента d в них стоит магнитный момент М. Так, если магнитный момент изменяется по гармоническому закону М = M 0 sin ωt (для этого должна гармонически меняться сила тока I в контуре), то усреднённая по времени интенсивность И. равна:

Отношение магнитного дипольного момента к электрическому имеет порядок v /c, где v - скорость движения зарядов, образующих ток; отсюда вытекает, что интенсивность магнитного дипольного И. в (v /c ) 2 раз меньше, чем дипольного электрического, если, конечно, последнее присутствует. Таким образом, интенсивности магнитного дипольного и электрического квадрупольного И. имеют одинаковый порядок величины.

И. релятивистских частиц. Одним из важнейших примеров такого И. является синхротронное И. заряженных частиц в циклических (кольцевых) ускорителях. Резкое отличие от нерелятивистского И. проявляется здесь уже в спектральном составе И.: если частота обращения заряженной частицы в ускорителе равна ω (нерелятивистский излучатель испускал бы волны такой же частоты), то интенсивность её И. имеет максимум при частоте ω макс Излучение γ 3 ω, где γ = -1/2 , т. е. основная доля И. при v с приходится на частоты, более высокие, чем ω. Такое И. направлено почти по касательной к орбите частицы, в основном вперёд по направлению её движения.

Ультрарелятивистская частица может излучать электромагнитные волны, даже если она движется прямолинейно и равномерно (но только в веществе, а не в пустоте!). Это И., названное Черенкова - Вавилова излучением (См. Черенкова-Вавилова излучение), возникает, если скорость заряженной частицы в среде превосходит фазовую скорость света в этой среде (u фаз = c /n , где n - показатель преломления среды). И. появляется из-за того, что частица «перегоняет» порождаемое ею поле, отрывается от него.

Квантовая теория излучения. Выше уже говорилось, что классическая теория даёт лишь приближённое описание процессов И. (весь физический мир в принципе является «квантовым»). Однако существуют и такие физические системы, И. которых невозможно даже приближённо описать в согласии с опытом, оставаясь на позициях классической теории. Важная особенность таких квантовых систем, как атом или молекула, заключается в том, что их внутренняя энергия не меняется непрерывно, а может принимать лишь определённые значения, образующие дискретный набор. Переход системы из состояния с одной энергией в состояние с другой энергией (см. Квантовые переходы) происходит скачкообразно; в силу закона сохранения энергии система при таком переходе должна терять или приобретать определённую «порцию» энергии. Чаще всего этот процесс реализуется в виде испускания (или поглощения) системой кванта И. - Фотон а. Энергия кванта ε γ = ћ ω, где ћ - Планка постоянная (ћ = 1,05450․10 -27 эрг сек ), ω - круговая частота. Фотон всегда выступает как единое целое, испускается и поглощается «целиком», в одном акте, имеет определённую энергию, импульс и спин (проекцию момента количества движения на направление импульса), т. е. обладает рядом корпускулярных свойств. В то же время фотон резко отличается от обычных классических частиц тем, что у него есть и волновые черты. Такая двойственность фотона представляет собой частное проявление корпускулярно-волнового дуализма (См. Корпускулярно-волновой дуализм).

Последовательной квантовой теорией И. является квантовая электродинамика (см. Квантовая теория поля). Однако многие результаты, относящиеся к процессам И. квантовых систем, можно получить из более простой полуклассической теории И. Формулы последней, согласно Соответствия принцип у, при определённом предельном переходе должны давать результаты классической теории. Таким образом, устанавливается глубокая аналогия между величинами, характеризующими процессы И. в квантовой и классической теориях.

И. атома. Система из ядра и движущегося в его кулоновском поле электрона должна находиться в одном из дискретных состояний (на определённом уровне энергии). При этом все состояния, кроме основного (т. е. имеющего наименьшую энергию), неустойчивы. Атом, находящийся в неустойчивом (возбуждённом) состоянии, даже если он изолирован, переходит в состояние с меньшей энергией. Этот квантовый переход сопровождается испусканием фотона; такое И. называется спонтанным (самопроизвольным). Энергия, уносимая фотоном ε γ = ћ ω, равна разности энергии начального i и конечного j состояний атома (ε i > ε j , ε γ = ε i - ε j ); отсюда вытекает формула Н. Бор а для частот И.:

Важно отметить, что такие характеристики спонтанного И., как направление распространения (для совокупности атомов - угловое распределение их спонтанного И.) и поляризация, не зависят от И. других объектов (внешнего электромагнитного поля).

Формула Бора (6) определяет дискретный набор частот (и следовательно, длин волн) И. атома. Она объясняет, почему спектры И. атомов имеют хорошо известный «линейчатый» характер - каждая линия спектра соответствует одному из квантовых переходов атомов данного вещества.

Интенсивность И. В квантовой теории, как и в классической, можно рассматривать электрические дипольное и высшие мультипольные И. Если излучатель нерелятивистский, основным является электрическое дипольное И., интенсивность которого определяется формулой, близкой к классической:

Величины d ij , являющиеся квантовым аналогом электрического дипольного момента, оказываются отличными от нуля лишь при определённых соотношениях между квантовыми числами (См. Квантовые числа) начального i и конечного j состояний (правила отбора для дипольного И.). Квантовые переходы, удовлетворяющие таким правилам отбора, называются разрешенными (фактически имеется в виду разрешенное электрическое дипольное И.). Переходы же высших мультипольностей называются запрещенными. Этот запрет относителен: запрещенные переходы имеют относительно малую вероятность, т. е. отвечающая им интенсивность И. невелика. Те состояния, переходы из которых «запрещены», являются сравнительно устойчивыми (долгоживущими). Они называются метастабильными состояниями (См. Метастабильное состояние).

Квантовая теория И. позволяет объяснить не только различие в интенсивностях разных линий, но и распределение интенсивности в пределах каждой линии; в частности, ширину спектральных линий (См. Ширина спектральных линий).

Источниками электромагнитного И. могут быть не только атомы, но и более сложные квантовые системы. Общие методы описания И. таких систем те же, что и при рассмотрении атомов, но конкретные особенности И. весьма разнообразны. И. молекул, например, имеет более сложные спектры, чем И. атомов. Для И. атомных ядер типично, что энергия отдельных квантов обычно велика (γ-кванты), интенсивность же И. сравнительно низка (см. Гамма-излучение , Ядро атомное).

Электромагнитное И. часто возникает и при взаимных превращениях элементарных частиц (аннигиляции электронов и позитронов, распаде нейтрального пи-мезона (См. Пи-мезоны) и т. д.).

Вынужденное И. Если частота внешнего И., падающего на уже возбуждённый атом, совпадает с одной из частот возможных для этого атома согласно (6) квантовых переходов, то атом испускает квант И., в точности такой же, как и налетевший на него (резонансный) фотон. Это И. называется вынужденным. По своим свойствам оно резко отличается от спонтанного - не только частота, но и направление распространения, и поляризация испущенного фотона оказываются теми же, что у резонансного. Вероятность вынужденного И. (в отличие от спонтанного!) пропорциональна интенсивности внешнего И., т. е. количеству резонансных фотонов. Существование вынужденного И. было постулировано А. Эйнштейн ом при теоретическом анализе процессов теплового И. тел с позиций квантовой теории и затем было подтверждено экспериментально. В обычных условиях интенсивность вынужденного И. мала по сравнению с интенсивностью спонтанного. Однако она сильно возрастает в веществе, в котором в метастабильном состоянии находится больше атомов, чем в одном из состояний с меньшей энергией (в которое возможен квантовый переход). При попадании в такое вещество резонансного фотона испускаются фотоны, в свою очередь играющие роль резонансных. Число излучаемых фотонов лавинообразно возрастает; результирующее И. состоит из фотонов, совершенно идентичных по своим свойствам, и образует когерентный поток (см. Когерентность). На этом явлении основано действие квантовых генераторов (См. Квантовый генератор) и квантовых усилителей (См. Квантовый усилитель) И.

Роль теории излучения. Практическое и научно-прикладное значение теории И. огромно. На ней основывается разработка и применение Лазер ов и Мазер ов, создание новых источников света, ряд важных достижений в области радиотехники и спектроскопии. Понимание и изучение законов И. важно и в другом отношении: по характеру И. (энергетическому спектру, угловому распределению, поляризации) можно судить о свойствах излучателя. И. - пока фактически единственный и весьма многосторонний источник информации о космических объектах. Например, анализ И., приходящего из космоса, привёл к открытию таких необычных небесных тел, как Пульсары . Изучение спектров далёких внегалактических объектов подтвердило теорию расширяющейся Вселенной (См. Вселенная). Одновременно изучение И. позволяет проникнуть в область явлений микромира. Именно теории И. принадлежит особая роль в формировании всей современной физической картины мира: преодоление трудностей, возникших в электродинамике движущихся сред, привело к созданию относительности теории (См. Относительности теория); исследования М. Планк а, посвященные тепловому излучению (См. Тепловое излучение), положили начало квантовой теории и квантовой механике (См. Квантовая механика). Дальнейшее развитие теории И. должно привести к ещё более глубокому познанию материи.

Лит.: Тамм И. Е., Основы теории электричества, 7 изд., М., 1957; Иваненко Д., Соколов А., Классическая теория поля, М. - Л., 1949; их же, Квантовая теория поля, М. - Л., 1952; Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, 2 изд., М., 1959; Ландау Л. Д., Лифшиц Е. М., Теория поля, 5 изд., М., 1967 (Теоретическая физика, т. 2).

В. И. Григорьев.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Антонимы :

Смотреть что такое "Излучение" в других словарях:

    Электромагнитное, в классич. электродинамике образование эл. магн. волн ускоренно движущимися заряж. ч цами (или перем. токами); в квант. теории рождение фотонов при изменении состояния квант. системы; термин «И.» употребляется также для… … Физическая энциклопедия

    Процесс испускания и распространения энергии в виде волн и частиц. В подавляющем большинстве случаев под излучением понимают электромагнитное излучение, которое в свою очередь можно разделить по источникам излучения на тепловое излучение,… … Википедия

    Изливание, излитие, источение, свет, испускание, эманация, радиация, лучеиспускание, сноп, фонирование Словарь русских синонимов. излучение эманация (книжн.) Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е.… … Словарь синонимов

    ИЗЛУЧЕНИЕ, излучения, ср. (книжн.). Действие по гл. излучить излучать и излучиться излучаться. Излучение солнцем теплоты. Тепловое излучение. Нетепловое излучение. Радиоактивное излучение. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Электромагнитное, процесс образования свободного электромагнитного поля, а также само свободное электромагнитное поле, существующее в форме электромагнитных волн. Излучения испускают ускоренно движущиеся заряженные частицы, а также атомы,… … Современная энциклопедия

    Электромагнитное процесс образования свободного электромагнитного поля; излучением называют также само свободное электромагнитное поле. Излучают ускоренно движущиеся заряженные частицы (напр., тормозное излучение, синхротронное излучение,… … Большой Энциклопедический словарь

Loading...Loading...