Конспект урока "Зависимость давления насыщенного пара от температуры. Кипение"

Испарение жидкостей. Насыщенные и ненасыщенные пары. Давление насыщенного пара. Влажность воздуха.

Испарение - парообразование, происходящее при любой температуре со свободной поверхности жидкости. Неравномерное распределение кинетической энергии молекул при тепловом движении приводит к тому, что при любой температуре кинетическая энергия некоторых молекул жидкости или твердого тела может превышать потенциальную энергию их связи с другими молекулами. Большей кинетической энергией обладают молекулы, имеющие большую скорость, а температура тела зависит от скорости движения его молекул, следовательно, испарение сопровождается охлаждением жидкости. Скорость испарения зависит: от площади открытой поверхности, температуры, концентрации молекул вблизи жидкости.

Конденсация - процесс перехода вещества из газообразного состояния в жидкое.

Испарение жидкости в закрытом сосуде при неизменной температуре приводит к постепенному увеличению концентрации молекул испаряющегося вещества в газообразном состоянии. Через некоторое время после начала испарения концентрация вещества в газообразном состоянии достигнет такого значения, при котором число молекул, возвращающихся в жидкость, становится равным числу молекул, покидающих жидкость за то же время. Устанавливается динамическое равновесие между процессами испарения и конденсации вещества. Вещество в газообразном состоянии, находящееся в динамическом равновесии с жидкостью, называют насыщенным паром. (Паром называют совокупность молекул, покинувших жидкость в процессе испарения.) Пар, находящийся при давлении ниже насыщенного, называют ненасыщенным.

Вследствие постоянного испарения воды с поверхностей водоемов, почвы и растительного покрова, а также дыхания человека и животных в атмосфере всегда содержится водяной пар. Поэтому атмосферное давление представляет собой сумму давления сухого воздуха и находящегося в нем водяного пара. Давление водяного пара будет максимальным при насыщении воздуха паром. Насыщенный пар в отличие от ненасыщенного не подчиняется законам идеального газа. Так, давление насыщенного пара не зависит от объема, но зависит от температуры. Эта зависимость не может быть выражена простой формулой, поэтому на основе экспериментального изучения зависимости давления насыщенного пара от температуры составлены таблицы, по которым можно определить его давление при различных температурах.

Давление водяного пара, находящегося в воздухе при данной температуре, называют абсолютной влажностью, или упругостью водяного пара. Поскольку давление пара пропорционально концентрации молекул, можно определить абсолютную влажность как плотность водяного пара, находящегося в воздухе при данной температуре, выраженную в килограммах на метр кубический (р).

Большинство явлений, наблюдаемых в природе, например быстрота испарения, высыхание различных веществ, увядание растений, зависит не от количества водяного пара в воздухе, а от того, насколько это количество близко к насыщению, т. е. от относительной влажности, которая характеризует степень насыщения воздуха водяным паром. При низкой температуре и высокой влажности повышается теплопередача и человек подвергается переохлаждению. При высоких температурах и влажности теплопередача, наоборот, резко сокращается, что ведет к перегреванию организма. Наиболее благоприятной для человека в средних климатических широтах является относительная влажность 40-60%. Относительной влажностью называют отношение плотности водяного пара (или давления), находящегося в воздухе при данной температуре, к плотности (или давлению) водяного пара при той же температуре, выраженное в процентах, т. е.

Относительная влажность колеблется в широких пределах. Причем суточный ход относительной влажности обратен суточному ходу температуры. Днем, с возрастанием температуры и, следовательно, с ростом давления насыщения, относительная влажность убывает, а ночью возрастает. Одно и то же количество водяного пара может либо насыщать, либо не насыщать воздух. Понижая температуру воздуха, можно довести находящийся в нем пар до насыщения. Точкой росы называют температуру, при которой пар, находящийся в воздухе, становится насыщенным. При достижении точки росы в воздухе или на предметах, с которыми он соприкасается, начинается конденсация водяного пара. Для определения влажности воздуха используются приборы, которые называются гигрометрами и психрометрами.

Возьмем закрытый сосуд, в который нальем воду. Молекулы водорода, обладающие большим запасом энергии, способны выходить с поверхности воды в газовую фазу. Часть из них может возвращаться обратно в воду. С течением времени устанавливается равновесие между числом молекул вышедших в пар и вернувшихся в жидкость.

Пар, находящийся в равновесии с жидкостью, называется насыщенным, а давление, которое он при этом оказывает, называется давлением насыщенного пара ( P° A).

P° A - давление насыщенного пара на чистом растворителе.

Теперь возьмем такой же закрытый сосуд и нальем раствора, содержащего вещества А+В (нелетучие) молекулы растворенного вещества в пер не выходят, выходят молекулы растворителя. Выходит меньшее число молекул растворителя, т.к. их в растворе меньше, чем в чистом растворителе. Поэтому равновесие установится при меньшем давлении.

P A - давление насыщенного пара растворителя над раствором. Это давление всегда меньше, чем давление насыщенного пара на чистом растворителе (P A < P° A ).

На основании этих опытовРауль вывел свой закон, который имеет две формы записи, а следовательно, и две формулировки:

1) давление насыщенного пара растворителя над раствором прямо пропорционально молярной доле растворителя. P A = P° A *N A

2) вместо молярной доли растворителя необходимо ввести молярную долю растворенного вещества

N A =1-N B

P A = P° A *(1-N B)

N B =(P° A -P A)/ P° A

P° A -P A характеризует понижение давления насыщенного пара растворителя над раствором.

Относительное понижение давления насыщенного пара растворителя над раствором равно молярной доли раствора.

2) температура кипения раствора – это та t, при которой давление насыщенного пара растворителя над раствором становится равным внешнему давлению.

АВ характеризует изменение давления насыщенного пара на чистом растворителе с t

СD характеризует изменение давления насыщенного пара растворителя над раствором концентрацией С m 1 ,с t

C’D’ характеризует изменение давления насыщенного пара растворителя над раствором концентрацией C m 2, C m 2 > С m 1

Выводы:

1) все растворы кипят при t более высокой, чем чистый растворитель

2) повышение t кипения прямо пропорциональна моляльной концентрации раствора.

∆T к =Т к р-ра -Т к р-ля

∆T к -повышение температуры кипения

∆T к =Е*С m (E - эбулиоскопическая постоянная)

Физический смысл величины Е:

Эбуллиоскопическая постоянная характеризует то повышение t кипения, которое наблюдалось бы, если С

Если С m =1 моль/кг*H 2 O, то Е=∆T к

Величина Е зависит только от природы растворителя и не зависит от природы реагирующего вещества

Е н2о =0,51 градус*кг/моль


При расчете T к температуры берутся в ºС!!!

3) температура замерзания раствора – это t, при которой давление насыщенного пара растворителя над раствором становится равным давлению насыщенного пара надо льдом.

MN характеризует изменение давления насыщенного пара надо льдом с t.

1) все растворы замерзают при t более низкой, чем чистый растворитель.

2) понижение t замерзания прямо-пропорционально раствора.

∆T з =Т з р-ля - Т з р-ра (∆Т=0)

∆T з = К*С m

К – кристаллоскопическая постоянная

Если С m =1 моль/кг*H 2 O, то К=T з

К н2о =1,86 градус*кг/моль

Практическое использование свойств растворов замерзать при более низкой t:

1) для приготовления охлаждающих смесей

2) в обмен с гололедицей дорогу, лед, посыпают с солью.

3) криоскопический метод определения молярной массы растворенного вещества:

Берут навеску растворителя, охлаждают ее смесью льда с солью и определяют t замерзания по специальному термометру, который называют термометром Бекмана . После этого растворитель расплавляют и добавляют к нему навеску растворенного вещества и также определяют температуру замерзания. Затем рассчитывают

∆T з = Т з р-ля - Т з р-ра

∆T к =(К*m B *1000)/(M B *m A) и из этой формулы рассчитывают M B .

M B =(К*m B *1000)/(∆T к *m A)

4) осмос и осмотическое давление

Рассмотрим устройство простейшего осмометра. В стакан с водой помещается осмометрическая ячейка, которая снизу закрыта полупроницаемой мембраной, чтобы уровень сахара и уровень воды был на одном уровне. Вода поднимается вверх и уровень поднимается

Осмос – это односторонняя самопроизвольная диффузия молекул растворителя через полупроницаемую мембрану из раствора с меньшей концентрацией в раствор с большей концентрацией.

Осмотическое давление равно гидростатическому давлению столбика жидкости высотой h, который надо приложить к раствору, чтобы задержать осмос.

Р осм. =С М *R*T

С М =1 моль/м 3

моль/л * 1000 = моль/м 3

П осм. -> Па (Н/м 2)

Т->K

Определение величины, на которую повышается t кипения растворов, называется эбулиометрией.

Определение величины понижения t замерзания чистого растворителя и раствора, называется криометрией .

Закон Вант-Гоффа: осмотическое давление (Р осм ) прямо пропорционально молярной концентрации (с) и абсолютной температуре раствора (Т):

Р осм. =С М *R*T

Растворы, имеющие одинаковое осмотическое давление, называют изотоническими.

Если два раствора имеют разное осмотическое давление, то раствор с большим осмотическим давлением является гипертоническим по отношению ко второму, а второй – гипотоническим по отношению к первому.

У растворов электролитов величины всех коллигативных свойств больше, чем у неэлектролитов.

Коллигативные свойства растворов электролитов:

1) изотонический коэффициент (i) – величина, показывающая во сколько раз свойство раствора электролита больше свойства раствора неэлектролита той же концентрации:

i = c*R*T эл. / c*R*T неэл. =∆Т зам.эл. /∆Т зам.неэл. = ∆Т кип.эл. /∆Т кип.неэл.

Значениеi зависит от степени диссоциации (α ) данного электролита и числа ионов (v), образующихся при диссоциации одной молекулы:

i = 1 + α (v – 1)

2) активностью (а) называют такую величину, подстановка которой вместо концентрации в уравнения, действительные для идеальных систем, делает их применимыми к растворам сильных электролитов. Ее можно представить как произведение концентрации (с) на некоторый переменный фактор (f), называемый коэффициентом активности . т.е. а = f*c

Коэффициент активности, включающий поправку на силы взаимодействия, связан с ионной силой раствора (μ ) следующим соотношением: lg f = -0,5Z*корень квадратный из μ.

где Z – заряд иона.

3) ионная сила раствора электролита равна полусумме произведений концентраций (с) каждого из присутствующих в растворе ионов на квадрат их заряда, т.е.

μ=1/2∑C 1 Z 1 2 =1/2(C 1 Z 1 2 + C 2 Z 2 2 +…+ C n Z n 2)

4) константа диссоциации

В растворах слабых электролитов наряду с ионами имеются недиссоциированные молекулы, т.е. наблюдается равновесие: НА↔Н + +А -

Характеристикой силы электролита является константа диссоциации: К дисс. =[А - ]/

Связь константы диссоциации с концентрацией электролита и степенью диссоциации была установлена Оствальдом. Закон разбавления Оствальда: К дисс. = cα 2 /(1-α)

Для слабых электролитов очень мала и ее значением можно пренебречь.

Тогда: К дисс. =α 2 c

2.10,11,12

Диффузия – самопроизвольный процесс выравнивания вещества в растворе.

С точки зрения термодинамики причиной диффузии является перемещение вещества от более высокого химического потенциала к низкому: μ(с 1)> μ(с 2), при с 1 >c 2

Диффузия прекращается, когда концентрация во всех точках раствор становится одинаковой. При этом химический потенциал в разных точках системы становится одинаковым.

Скорость диффузии вещества зависит от массы и формы ее молекул, а также от разности концентраций этого вещества в различных слоях.

В 1855 Фик, изучая диффузные процессы установил закон: скорость диффузии вещества пропорциональна площади поверхности, через которую переносится вещество, и градиенту концентрации этого вещества .

∆n/∆t= -D*S*∆c/∆x

∆n/∆t - скорость диффузии, моль/c

S - площадь поверхности, м 2

∆c/∆x - градиент концентрации, моль/м 2

D - коэффициент пропорциональности или коэффициент диффузии вещества, м 2 /c

Эйнштейн и независимо от него Смолуховский вывели следующее уравнение для коэффициента диффузии: D=(RT/N A)*(1/6πηr)

R - универсальная газовая постоянная, раная 8,31 Дж/(моль К)

T - абсолютная температура, К

N A - постоянная Авогадро, равная 6,02*10 23 1/моль

r - радиус диффундирующих частиц, м

D - коэффициент диффузии, м 2 /c

η - вязкость среды, Н*с/м 2

Белки́ (протеины , полипептиды ) - высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью аминокислот.

Различают белки:

1) простой белок рассматривают как продукт поликонденсации аминокислот, т.е. как специфический природный полимер

2) сложные белки состоят из простого белка и небелковых компонентов – углеводов, нуклеиновых кислот, липидов и других соединений.

Значение рН, при котором белок находится в изоэлектрическом состоянии , т.е. в состоянии, при котором число разноименных зарядов в белковой частице одинаково и ее общий заряд равен нулю, называется изоэлектрической точкой данного белка.

Высаливание – это явление выделения в осадок растворенного ВМС под действием большой концентрации электролита.

По своему высаливающему действию все катионы и анионы можно расположить в лиотропные ряды :

Расположение ионов в лиотропных рядах связано не с величиной их заряда, как в случае обычной коагуляции, а со степенью их гидратации. Чем больше ион способен связывать растворитель, тем больше его высаливающее действие. Основная роль в высаливании, как и в набухании, принадлежит анионам, катионы же оказывают меньшее воздействие на высаливание.

2.13,16,18,19,20,21

Свойства полимеров существенно изменяются при добавлении низкомолекулярных соединений. Например, если целлофановую пленку, состоящую из целлюлозы, смочить глицерином, небольшие молекулы глицерина проникают в пространство между молекулами целлюлозы и образуют подобие смазки. При этом ослабляются межмолекулярные связи, и пленка становится более пластичной.

Пластификация полимера - Повышение пластичности полимера при небольшом количестве НМС называется.

Набухание и растворение ВМС . При контакте полимера (ВМС) и растворителя (НМС) происходит набухание, и затем растворение полимера.

1)Набухание - проникновение растворителя в полимерное вещество, сопровождаемое увеличением объема и массы образца. Количественно набухание измеряется степенью набухания:

Степень набухания зависит от жесткости полимерных цепей. У жестких полимеров с большим числом поперечных связей (сшивок) между цепями степень набухания невелика. Так, например, эбониты - сильно вулканизированные резины - практически не набухают в бензоле. Каучуки (резины) ограниченно набухают в бензине. Желатин в холодной воде также характеризуется ограниченным набуханием. Добавление горячей воды к желатину или бензола к натуральному каучуку приводит к неограниченному набуханию этих полимеров.

Влияние различных факторов на степень набухания:

1) Степень набухания полимера зависит от его природы и природы растворителя. Полимер набухает лучше в растворителе, молекулярные взаимодействия которого с макромолекулами велики. Полярные полимеры набухают в полярных жидкостях (белок в воде), неполярные - в неполярных (каучук в бензоле). Ограниченное набухание аналогично ограниченной растворимости. В результате образуются студни (ограниченно набухший полимер).

2) Кроме природы растворителя на набухание ВМС влияют присутствие электролитов

3) рН среды

4) температура.

2) Процесс перехода золя или раствора полимера в студень называется желатинированием или застудневанием .

Факторы, влияющие на это процесс:

1) концентрация (повышение концентрации ускоряет процесс желатинирования)

2) природа веществ (не все гидрофобные золи могут переходить в гели, например, золи благородных металлов: золота, серебра, платины – не способны застудневать, что объясняется своеобразным строением и низкой концентрацией их золей)

3) температура (низкие температуры способствуют застудневанию. Понижение температуры ускоряет агрегацию частиц и понижает растворимость вещества)

4) время процесса (процесс застудневания даже при низкой температуре требует продолжительного времени (от минут до недель) для формирования ячеистой объемной сетки. Время, необходимое для ее образования, называется периодом созревания)

5) форма частиц (особенно хорошо протекают процессы желатинирования в золях, состоящих из палочковидных или лентообразных по форме частиц)

6) электролиты (различно влияют на скорость желатинирования)

7) реакция среды (желатинирование происходит быстрее, когда молекулы белка не имеют электрического заряда и менее гидратированы, т.е. находятся в изоэлектрическом состоянии)

Способность многих гелей под влиянием механических воздействий разжижаться, переходить в золи, а затем в состояние покоя вновь застудневать получила название тиксотропии .

3) Высалиыание ВМС - выделение ВМС из раствора при введении ионов или неэлектролитов.

Наименьший высаливающий эффект будут проявлять мягкие основания-анионы I- и NCS- - слабо гидратирующиеся и хорошо адсорбирующиеся на молекулах ВМС.

Снижение устойчивости раствора ВМС наблюдается при уменьшении лиофильности полимера. Лиофильность может быть понижена не только добавлением хорошо гидратируемых ионов, но и добавлением к водному раствору ВМС растворителя, в котором полимер хуже растворим, чем в воде. Например, этанол оказывает высаливающий эффект на желатин, растворенный в воде.

4) Коацервация - при нарушении устойчивости раствора ВМС возможно образование коацервата - новой жидкой фазы, обогащенной полимером. Коацерват может находиться в исходном растворе в виде капель или образовать сплошной слой (расслаивание);

Коацервация происходит при изменении температуры или состава раствора и обусловлена понижением взаимной растворимости компонентов раствора. Наиболее изучена коацервация белков и полисахаридов в водных растворах. Согласно одной из теорий происхождения жизни на Земле (А.И.Опарин) коацерваты являются зародышами древних форм жизни.

Использование: при микрокапсулировании лекарств. Для этого лекарственное вещество диспергируют в растворе полимера, а затем, изменяя температуру или рН среды, испаряя часть растворителя или вводя высаливатель, выделяют из раствора фазу, обогащенную полимером. Мелкие капли этой фазы отлагаются на поверхности капсул дисперигируемых частиц, образуя сплошную оболочку. Микрокапсулирование лекарств обеспечивает устойчивость, пролонгирует действие, маскирует неприятный вкус лекарств.

2.24,25,26,27

Вязкость – мера сопротивления среды движению . Эту величину характеризуют коэффициентом вязкости.

Молекулярно-кинетическая теория позволяет не только понять, почему вещество может находиться в газообразном, жидком и твердом состояниях, но и объяснить процесс перехода вещества из одного состояния в другое.

Испарение и конденсация. Количество воды или любой другой жидкости в открытом сосуде постепенно уменьшается. Происходит испарение жидкости, механизм которого был описан в курсе физики VII класса. При хаотическом движении некоторые молекулы приобретают столь большую кинетическую энергию, что покидают жидкость, преодолевая силы притяжения со стороны остальных молекул.

Одновременно с испарением происходит обратный процесс - переход части хаотически движущихся молекул пара в жидкость. Этот процесс называют конденсацией. Если сосуд открытый, то покинувшие жидкость молекулы могут и не возвратиться в

жидкость. В этих случаях испарение не компенсируется конденсацией и количество жидкости уменьшается. Когда поток воздуха над сосудом уносит образовавшиеся пары, жидкость испаряется быстрее, так как у молекулы пара уменьшается возможность вновь вернуться в жидкость.

Насыщенный пар. Если сосуд с жидкостью плотно закрыть, то убыль ее вскоре прекратится. При неизменной температуре система «жидкость - пар» придет в состояние теплового равновесия и будет находиться в нем сколь угодно долго.

В первый момент, после того как жидкость нальют в сосуд и закроют его, она будет испаряться и плотность пара над жидкостью - увеличиваться. Однако одновременно с этим будет расти число молекул, возвращающихся в жидкость. Чем больше плотность пара, тем большее число молекул пара возвращается в жидкость. В результате в закрытом сосуде при постоянной температуре в конце концов установится динамическое (подвижное) равновесие между жидкостью и паром. Число молекул, покидающих поверхность жидкости, будет равно числу молекул пара, возвращающихся за то же время в жидкость. Одновременно с процессом испарения происходит конденсация, и оба процесса в среднем компенсируют друг друга.

Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным паром. Это название подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара.

Если воздух из сосуда с жидкостью предварительно откачан, то над поверхностью жидкости будет находиться только насыщенный пар.

Давление насыщенного пара. Что будет происходить с насыщенным паром, если уменьшать занимаемый им объем, например сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем, поддерживая температуру содержимого цилиндра постоянной?

При сжатии пара равновесие начнет нарушаться. Плотность пара в первый момент немного увеличивается, и из газа в жидкость начинает переходить большее число молекул, чем из жидкости в газ. Это продолжается до тех пор, пока вновь не установится равновесие и плотность, а значит, и концентрация молекул не примет прежнее значение. Концентрация молекул насыщенного пара, следовательно, не зависит от объема при постоянной температуре.

Так как давление пропорционально концентрации в соответствии с формулой то из независимости концентрации (или плотности) насыщенных паров от объема следует независимость давления насыщенного пара от занимаемого им объема.

Независимое от объема давление пара при котором жидкость находится в равновесии со своим паром, называют давлением насыщенного пара.

При сжатии насыщенного пара все большая часть его переходит в жидкое состояние. Жидкость данной массы занимает меньший объем, чем пар той же массы. В результате обьем пара при неизменной его плотности уменьшается.

Мы много раз употребляли слова «газ» и «пар». Никакой принципиальной разницы между газом и паром нет, и эти слова в общем-то равноправны. Но мы привыкли к определенному, относительно небольшому интервалу температуры окружающей среды. Слово «газ» обычно применяют к тем веществам, давление насыщенного пара которых при обычных температурах выше атмосферного (например, углекислый газ). Напротив, о паре говорят тогда, когда при комнатной температуре давление насыщенного пара меньше атмосферного и вещество более устойчиво в жидком состоянии (например, водяной пар).

Независимость давления насыщенного пара от объема установлена на многочисленных экспериментах по изотермическому сжатию пара, находящегося в равновесии со своей жидкостью. Пусть вещество при больших объемах находится в газообразном состоянии. По мере изотермического сжатия плотность и давление его увеличиваются (участок изотермы АВ на рисунке 51). При достижении давления начинается конденсация пара. В дальнейшем при сжатии насыщенного пара давление не меняется до тех пор, пока весь пар не обратится в жидкость (прямая ВС на рисунке 51). После этого давление при сжатии начинает резко возрастать (отрезок кривой так как жидкости мало сжимаемы.

Изображенная на рисунке 51 кривая носит название изотермы реального газа.

Билет №13. Насыщенный и ненасыщенный пар: зависимость давления насыщенного пара от температуры, кипение, зависимость температуры кипения от давления, изотерма пара, критическая температура, критическое состояние вещества, относительная воздуха, точка росы, гигрометр, психрометр, получение сжиженного газа, его свойства и применение.

Насыщенный пар - это пар находящийся в равновесии со своей жидкостью. Ненасыщенный пар - это пар, не находящийся в равновесии со своей жидкостью. Влажность воздуха - это количество водяных паров в воздухе.

Зависимость давления насыщенного пара от температуры.

Так как в насыщенном паре при возрастании температуры концентрация молекул увеличивается, а их средняя кинетическая энергия так же возрастает, то давление насыщенного пара с повышением температуры возрастает быстрее, чем давление идеального газа с постоянной концентрацией молекул.

Кипение. Зависимость температуры кипения от давления.

Процесс испарения, идущий по всему объёму жидкости, называется кипением. Давление насыщенного водяного пара при кипении равно внешнему давлению на жидкость. При нормальном давлении кипение воды происходит при 100˚С. Температура кипения зависит от внешнего давления. При понижении/повышении внешнего давления температура кипения жидкости понижается/повышается.

Изотерма пара.

График изотермы при критической температуре обозначен на рисунке 2.26 символом Ткр; его форма существенно отличается от гиперболы. Штриховая кривая разделяет три фазы. Слева вверху область соответствует жидкой фазе, справа от кривой и внизу – область ненасыщенного пара (газа), под штриховой кривой лежит область ненасыщенного пара над жидкостью (двухфазная среда). Если изотермически сжимать ненасыщенный пар при температуре ниже критической, то концентрация молекул возрастает и соответственно давление будет возрастать вплоть до давления насыщенного пара. При дальнейшем уменьшении объёма на дне сосуда образуется жидкость и установится динамическое равновесие между насыщенным паром и жидкостью. Давление насыщенного пара остаётся неизменным, а с уменьшением объёма все большая часть пара переходит в жидкость. Процесс уменьшения объёма при дальнейшем сжатии прекращается, когда весь газ в сосуде превращается в жидкость.

Относительная влажность воздуха.

ⱷ=р/р0 * 100%

Отношение давления паров воды р к давлению насыщенного пара р0 при данной температуре, выраженное в процентах называется относительной влажностью воздуха.

Точка росы.

Это температура, при которой пар становится насыщенным, т. е. р=р0, ⱷ=100%

Гигрометр.

Это прибор, с помощью которого можно определить точку росы. Он представляет собой металлический сосуд, в который наливается легко испаряющаяся жидкость, например эфир. При испарении эфира происходит охлаждение стенок гигрометра, и при достижении точки росы на полированной поверхности появляются капли росы.

Действие гигрометра другого типа, волосного, основано на свойстве обезжиренного человеческого волоса удлиняться при повышении влажности. В этом приборе натянутый волос соединён со стрелкой прибора, показывающей по шкале относительную влажность воздуха.

Психрометр.

Это прибор, с помощью которого можно определить относительную влажность воздуха. Один термометр измеряет температуру воздуха, а другой - температуру ткани, смоченной водой. С поверхности влажной ткани происходит испарение воды, в результате температура влажной ткани понижается.

Сжижение газов имеет техническое и научное значение. Сжижение воздуха используется в технике для разделения воздуха на составные части. Метод основан на том, что различные газы, из которых состоит воздух, кипят при различных температурах. Наиболее низкие температуры кипения имеют гелий, неон, аргон. У кислорода температура кипения несколько выше, чем у аргона. Поэтому сначала испаряется гелий, неон, азот, а затем аргон, кислород.

Сжиженные газы находят широкое применение в технике. Азот идёт для получения и азотных солей, употребляемых в для удобрения почвы. Аргон, неон и другие инертные газы используются для наполнения электрических ламп накаливания, а также газосветных ламп. Наибольшее применение имеет кислород. В смеси с ацетиленом или он даёт пламя очень высокой температуры, применяемое для резки и . Вдувание кислорода (кислородное дутьё) ускоряет металлургические процессы. Доставляемый из в подушках кислород действует как обезболивающее. Особенно важным является применение жидкого кислорода в качестве окислителя для двигателей космических ракет.

Жидкий водород используется как топливо в космических ракетах. Например, для заправки американской ракеты «Сатурн – 5» требуется 90т жидкого водорода.

Жидкий аммиак нашёл широкое применение в холодильниках – огромных складах, где хранятся скоропортящиеся продукты. Охлаждение, возникающее при испарении сжиженных газов, используют в рефрижераторах при перевозке скоропортящихся продуктов.

Газы, применяемые в промышленности, медицине и т. п., легче перевозить, когда они находятся в сжиженном состоянии, так как при этом в том же объёме заключается большее количество вещества.


Loading...Loading...