Понятие «генотип» и «фенотип». Генотип – сбалансированная система взаимодействующих генов

Здравствуйте, уважаемые читатели блога репетитора биологии по Скайпу .

Вот такая получается «петрушка», если не сказать хуже. Очередной раз сталкиваюсь с тем, что основополагающие понятия генетики в учебниках преподносятся так, что разобраться в них бывает трудно.

Эту статью меня так и подмывало назвать сначала «Фенотип и генотип». Понятно, что фенотип вторичен от генотипа. Но если сам термин «генотип» учащиеся чаще всего могут истолковать правильно, то относительно понятия «фенотипа», как выясняется, нет четкого представления.

Да откуда же ему быть «четкому», если определения фенотипа в учебной литературе носят такой расплывчатый характер.

«Фенотип — совокупность всех внешних признаков организма, определяемых генотипом и условиями окружающей среды». Или «Фенотип — совокупность всех внешних и внутренних признаков и свойств организма, зависящих от генотипа и условий внешней среды».

А если действительно и «внешних», и «внутренних», а это на самом деле так, то в чем тогда отличие фенотипа от генотипа?

Всё же придется начинать не с «хвоста», а с «головы». Уверен, пройдет пара минут и вы, несколько уточнив для себя, что такое «генотип организма», сможете получить более четкое представление и о «фенотипе».

Часто термины «признак» и «ген» мы используем как синонимы

Говорят, «генотип — совокупность всех признаков организма». И вот тут то важно понять самое главное — именно к определению генотипа такое определение вносит дополнительную путаницу. Да, действительно, информация о любом признаке закодирована в каком-либо гене (или совокупности генов) организма.

Но всех генов очень много, весь генотип организма огромен, а в течение жизни данной особи или отдельной клетки реализуется (то есть служит образованию каких-либо определенных признаков) лишь незначительная часть генотипа.

Поэтому правильным будет запомнить, что «генотип — совокупность всех генов организма». А уж какие из этих генов реализуются в течение жизни организма в его фенотипе , то есть послужат образованию каких-либо признаков — это зависит как от взаимодействия множества этих генов, так и от конкретных условий окружающей среды.

Таким образом, если правильно понимать, что собой представляет генотип, то не остается и лазейки для путаницы в терминах, обозначающих, что такое «генотип», а что такое «фенотип».

Понятно, что «фенотип — это совокупность всех реализовавшихся в течение жизни организма генов, послуживших образованию конкретных признаков данного организма в определенных условиях среды».

Поэтому на протяжении жизни организма, под действием меняющихся условий среды, фенотип может изменяться, хотя он и базируется на том же самом неизменном генотипе. А в каких границах может меняться фенотип?

Норма реакции

Эти границы для фенотипа четко очерчены генотипом и носят название «нормы реакции». В фенотипе ведь не может проявиться ничего того, чего бы не было уже «записано» ранее в генотипе.

Чтобы лучше понять, что вкладывается в понятие «нормы реакции», разберем на конкретных примерах возможного проявления «широкой» или «узкой» нормы реакции.

Вес (масса) коровы и удойность коровы, какой признак имеет более широкую, а какой более узкую норму реакции?

Понятно, что вес взрослой коровы определенной породы как ее хорошо ни корми не может превысить, к примеру, 900 кг, а при плохом содержании — не может быть меньше 600 кг.

А удойность? При оптимальном содержании и кормлении удойность может меняться от каких-то максимально возможных для данной породы величин, она может упасть до 0, при неблагоприятных условиях содержания. Значит масса коровы имеет довольно узкую норму реакции, а удойность — очень широкую.

Пример с картофелем. Любому очевидно, что «вершки» имеют довольно узкую норму реакции, а масса клубней — очень широкую.

Думаю, теперь всё «устаканилось». Генотип — множество всех генов организма, это весь его потенциал на что он может быть способен в жизни. А фенотип — лишь проявление небольшой части этого потенциала, реализация лишь части генов организма в ряд конкретных признаков в течение его жизни.

Наглядным примером реализации в течение жизни организма части его генотипа в фенотип, являются однояйцевые близнецы. Имея абсолютно одинаковый генотип, в первые годы жизни они почти неотличимы друг от друга фенотипически. Но взрослея, имея сначала незначительные отличия в поведении, в каких-то привязанностях, отдавая предпочтение тому или иному роду деятельности, эти близнецы становятся довольно отличимыми и фенотипически: по выражению лица, строению тела.

В конце этой заметки, я бы хотел вот на что ещё обратить ваше внимание. Слово генотип для изучающих основы генетики имеет как бы два смысла. Выше мы разобрали значение «генотипа» в широком его понимании.

Но для уяснения законов генетики, при решении генетических задач, под словом генотип подразумевают лишь сочетание каких-то конкретных отдельных аллелей одной (моногибридное скрещивание) или двух (дигибридное скрещивание) пар определенных генов, контролирующих проявление конкретного одного или двух признаков.

То есть, и фенотип то у нас при этом какой-то усеченный, говорим «фенотип организма», а сами изучили механизм наследования лишь одного, двух его признаков. В широком же смысле термин «фенотип» относится к любым морфологическим, биохимическим, физиологическим и поведенческим характеристикам организмов.

P.S. В связи с характеристиками понятий «генотип» и «фенотип», уместным было бы здесь разобрать вопрос о наследственной и ненаследственной формах изменчивости организмов. Ну да ладно, об этом как раз и поговорим в .

***************************************************************

У кого есть вопросы по статье к репетитору биологии по Скайпу , замечания, пожелания — прошу в писать комментарии.

Генотип и фенотип – понятия, с которыми школьники знакомятся в старших классах школы в курсе «Общей биологии». Из-за тождественности звучания потенциальные выпускники очень часто путают два базовых биологических термина.

Генотип – это тот набор генов, который живой организм получил при рождении. Иными словами, это — полный комплект генетической информации, которой обладает конкретный биологический индивидуум. Под юрисдикцию термина вошли не только группы генов или аллели, а и виды сцеплений между собой в хромосоме этих носителей наследственной информации.

Набор и комбинация генов прямо влияет на развитие, внутреннее и внешнее строение, особенности процессов жизнедеятельности конкретного организма. Для определения генотипа следует провести генетический анализ или экспертизу. В растениеводстве и племенном животноводстве для выделения нужного гена пользуются анализирующим скрещиванием.

Одинаковый генотип фиксируется у однояйцевых близнецов. Например, два живых существа – котенка, ребенка, мышонка одного пола, которые образовались из одной оплодотворенной яйцеклетки. Если биологический вид размножается вегетативным путем (делением, размножением спорами, почкованием) или количество организмов увеличивается за счет клонирования, то пока не происходит мутация, особи имеют аналогичный генетический комплект.

Термин был введен в «эксплуатацию» господином Иогансеном в 1909 году при публикации результатов изучения наследственности. Значительная часть наличествующих в организме генов проявляются в фенотипе организма.

Фенотип – это внутренние и внешние параметры организма, которые появились у него в результате онтогенеза, то есть во время его индивидуального развития. В основе фенотипа лежит генотип – набор генов, возможные мутации и факторы внешней среды. Например – температура, уровень радиации, концентрация соли в воде. У организмов, обладающих диплоидным или двойным набором хромосом, в фенотипе проявляются лишь доминантные гены. Рецессивные аллели чаще всего не проявляются в фенотипе, но они сохраняются в генотипе и могут быть переданы организмом по наследству.

Чем выше уровень организации организма и его чувствительность к внешним фактором, тем больше существует возможностей для вариаций фенотипа.

Термин фенотип был введен в эксплуатацию вышеназванным датчанином Иогансеном одновременно с понятием «генотип» для разграничения конкретной наследственности и того, как конкретный организм реализовал свою генетическую программу.

Идеальным примером для демонстрации возможностей фенотипа может стать история про двух однояйцевых близнецов, которые имеют одинаковый генный набор априори. Поместив их на начальной стадии развития в различные жизненные условия – климатические, социальные, вы получите организмы, которые весьма отличаются по ряду внешних и качеству внутренних параметров. Но не стоит забывать, что есть такие черты, которые определяются лишь генотипом. Например – цвет глаз или группа крови.

Выводы сайт

  1. Генотип живой организм получает от родителей, в результате слияния двух носителей наследственной информации. Фенотип формируется на основе генотипа, на него влияет ряд внешних факторов и неизбежные мутации.
  2. Генотип можно определить после анализа ДНК, фенотип видно невооруженным взглядом, уже при анализе параметров внешнего вида живого организма.
  3. Набор генов индивидуум передает своему потомству, фенотип формируется в процессе индивидуального развития живого существа.

Геноти́п - совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма.

Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена (см. гомозигота, гетерозигота). Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:

1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).

2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности.

Феноти́п (от греческого слова phainotip - являю, обнаруживаю) - совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешне средовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.

Фенотип - совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).

Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределенности. Во-первых, большинство молекул и структур кодируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа. Например, именно так обстоит дело с группами крови человека. Поэтому расширенное определение фенотипа должно включать характеристики, которые могут быть обнаружены техническими, медицинскими или диагностическими процедурами. Дальнейшее, более радикальное расширение может включать приобретенное поведение или даже влияние организма на окружающую среду и другие организмы. Например, согласно Ричарду Докинзу, плотину бобров также как и их резцы можно считать фенотипом генов бобра.

Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о двух характеристиках фенотипа: а) число направлений выноса характеризует число факторов среды, к которым чувствителен фенотип, - мерность фенотипа; б) «дальность» выноса характеризует степень чувствительности фенотипа к данному фактору среды. В совокупности эти характеристики определяют богатство и развитость фенотипа. Чем многомернее фенотип и чем он чувствительнее, чем дальше фенотип от генотипа, тем он богаче. Если сравнить вирус, бактерию, аскариду, лягушку и человека, то богатство фенотипа в этом ряду растет.

Гено́м - совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов.

Термин «геном» был предложен Гансом Винклером в 1920 г. для описания совокупности генов, заключённых в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими («избыточными») последовательностями нуклеотидов, которые не заключают в себе информации о белках и РНК.

Генетическая информация в клетках содержится не только в хромосомах ядра, но и во внехромосомных молекулах ДНК. У бактерий к таким ДНК относятся плазмиды и некоторые умеренные вирусы, в клетках эукариот - это ДНК митохондрий, хлоропластов и других органоидов клеток (См. плазмон). Объёмы генетической информации, заключённой в клетках зародышевой линии (предшественники половых клеток и сами гаметы) и соматических клетках, в ряде случаев существенно различаются. В онтогенезе соматические клетки могут утрачивать часть генетической информации клеток зародышевой линии, амплифицировать группы последовательностей и (или) значительно перестраивать исходные гены.

Следовательно, под геномом организма понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных генетических элементов, содержащуюся в отдельной клетке зародышевой линии многоклеточного организма. В определении генома отдельного биологического вида необходимо учитывать, во-первых, генетические различия, связанные с полом организма, поскольку мужские и женские половые хромосомы различаются. Во-вторых, из-за громадного числа аллельных вариантов генов и сопутствующих последовательностей, которые присутствуют в генофонде больших популяций, можно говорить лишь о некоем усреднённом геноме, который сам по себе может обладать существенными отличиями от геномов отдельных особей. Размеры геномов организмов разных видов значительно отличаются друг от друга, и при этом часто не наблюдается корреляции между уровнем эволюционной сложности биологического вида и размером его генома.

Генофонд - понятие из популяционной генетики, описывающее совокупность всех генных вариаций (аллелей) определённой популяции. Популяция располагает всеми своими аллелями для оптимального приспособления к окружающей среде. Можно также говорить о едином генофонде вида, так как между разными популяциями вида происходит обмен генами.

Если во всей популяции существует лишь один аллель определённого гена, то популяция по отношению к вариантам этого гена называется мономорфной. При наличии нескольких разных вариантов гена в популяции она считается полиморфной.

Если у рассматриваемого вида имеется более чем один набор хромосом, то совокупное количество разных аллелей может превышать количество организмов. Однако в большинстве случаев количество аллелей всё же меньше. При сильном инбридинге часто возникают мономорфные популяции лишь с одним аллелем многих генов.

Одним из показателей объёма генофонда является эффективная величина популяции, сокращённо . У популяции людей с диплоидным набором хромосом может иметься максимально в два раза больше аллелей одного гена, чем индивидов, то есть <= 2 * (величины популяции). Исключены при этом половые хромосомы. Аллели всей популяци в идеальном случае распределены по закону Харди-Вайнберга.

Более крупный генофонд с множеством разных вариантов отдельных генов ведёт к лучшему приспособлению потомства к меняющейся окружающей среде. Разнообразие аллелей позволяет приспособиться к изменениям значительно быстрее, если соответствующие аллели уже имеются в наличии, чем если они должны появиться вследствие мутации. Тем не менее, в неизменяющейся окружающей среде меньшее число аллелей может быть более выгодным, чтобы при половом размножении не возникало слишком много неблагоприятных комбинаций.

Генотип - совокупность всех генов организма, который он получает от родителей .

Фенотип- совокупность внешних и внутренних признаков организма, формирующихся в процессе взаимодействия генотипа и факторов окружающей среды.

Кариотип - совокупность диплоидного набора хромосом соматических клеток определенного биологического вида, который характеризуется постоянством числа, формы, размера.

СООТНОШЕНИЕ ГЕНОТИПА И ФЕНОТИПА.
Совокупность всех генов организма называется генотипом. Генотип представляет собой взаимодействующие друг с другом и влияющие друг на друга совокупности генов. Каждый ген испытывает на себе воздействие других генов генотипа и сам оказывает на них влияние, поэтому один и тот же ген в разных генотипах может проявляться по-разному.

Совокупность всех свойств и признаков организма называется фенотипом. Фенотип развивается на базе определенного генотипа в результате взаимодействия с условиями внешней среды. Организмы, имеющие одинаковый генотип, могут отличаться друг от друга в зависимости от условий развития и существования. Отдельный признак называется феном. К фенотипическим признакам относятся не только внешние признаки (цвет глаз, волос, форма носа, окраска цветков и тому подобное), но и анатомические (объем желудка, строение печени и тому подобное), биохимические (концентрация глюкозы и мочевины в сыворотке крови и так далее) и другие.

Если мы знаем характер генетического контроля признака, то мы можем предсказать с определенной вероятностью фенотип на основе генотипа (если он известен). Если мы не знаем, как признак контролируется, то мы будем в полном неведении, и не сможем ничего сказать относительно признаков будущих поколений. Если мы знаем связь между генотипом и фенотипом, то мы можем сделать определенные предсказания о развитии признака (например, болезни) и, в некоторых случаях, предпринять действия полезные индивиду. Для этого нам надо установить генотип. Сейчас эта задача технически разрешима (поскольку секвенирование генома человека проведено), хотя и непомерно дорога.

В реальности нам дано лишь наблюдать проявление признака в поколениях и на основе этого создавать модель генетического контроля формирования признака, которая может быть верна лишь в данных конкретных условиях. Но, тем не менее, если мы создали такую модель, то мы можем в этом случае иметь средства для регуляции какого-то признака, в частности, повлиять возникновение или ход какой-либо болезни. Таким образом, генетический контроль и его изучение имеет большое практическое, в частности, медицинское, значение. И в основе всего лежат менделевские закономерности, которые могут проявляться по-разному в зависимости от конкретных особенностей генотипа и среды.

Мы сейчас рассмотрим, какие могут быть условия генотипа и среды, при которых эти закономерности будут выглядеть не такими, как их наблюдал Мендель, и почему это происходит. Мендель наблюдал, что при объединении задатков двух признаков в одном организме может быть проявление только одного признака. Второй задаток не проявляется. Такой тип доминирования называется полным.

Открытие законов Менделя заново привело к выявлению других типов доминирования. Например, неполного доминирования, когда фенотип гетерозиготы является промежуточным между двумя гомозиготами. Есть еще один тип доминирования, очень популярный в последнее время в суде, – кодоминирование – в гетерозиготе проявляются фенотипы каждой из гетерозигот. Это явление имеет место, в частности, и у человека. Если у вас есть папина хромосома и мамина хромосома (а это, несомненно, так), и они различаются в миллионе позиций, что можно выявить разными методами, то это все случаи кодоминирования.

Первичным фенотипом организма является последовательность нуклеотидов молекул его ДНК. На этом фенотипе строятся все фенотипы следующих уровней. То есть при исследовании вашей ДНК проявляются все и папины, и мамины признаки; каждая из молекул ДНК проявляет свой признак независимо от присутствия другой молекулы ДНК с другим признаком: при секвенировании или при расщеплении ДНК какими-либо ферментами видны оба состояния ДНК. Кодоминантные признаки (маркеры самой молекулы ДНК) характеризуют различие между хромосомами и используются для идентификации личности или установления отцовства (число таких случаев разрешаемых в суде составляет несколько сотен в год).

Когда мы говорим о генотипе и фенотипе – это такие крайние единого процесса реализации наследственной информации в индивидуальном развитии. Например, гладкая или морщинистая форма горошины, это ее фенотип. А генотип – это та специфическая последовательность нуклеотидов, которая в данных условиях определяет, что горошина будет гладкой или морщинистой. В 1999 году с менделевскими линиями гороха была проведена следующая работа. Участки хромосомы, отвечающие за форму горошины, были клонированы, секвенированы, и было установлены их особенности - различие последовательностей нуклеотидов – которые и определяли развитие гладкой или морщинистой формы горошины.

Обратите внимание, что форма горошины является конечным признаком, а формированию признака этого уровня предшествует проявление признака на многих предыдущих уровнях. Во-первых, это наличие (аллель 1) или отсутствие (аллель 2) олигосахарида, которое и приводит к той или иной форме горошины. Еще более глубоким уровнем проявления фенотипа является то, что имеется соответствующий белок (аллель 1), который необходим для синтеза олигосахарида или это тот же белок, но альтернативной структуры (аллель 2), при которой олигосахарид не образуется. Еще более глубоким признаком является РНК, с которой синтезируется этот белок. Эти РНК различны по последовательности нуклеотидов (аллели 1 и 2), что и делает различными соответствующие белки. А эти РНК различны, потому что транскрибируется с разных молекул ДНК, папиной и маминой, у которых последовательности нуклеотидов в данной позиции различны (аллели 1 и 2). Все это – проявление одного и того же фенотипа, последовательно реализуемого на каждом из уровней.

Мы имеем право говорить о фенотипе на каждом из этих многих уровней – от конкретных особенностей последовательности нуклеотидов ДНК до формы горошины. При этом, как только мы продвигаемся от ДНК выше, тем больше влияние условий окружающей среды. Например, возможность функционирования разных аллелей на уровне ДНК (транскрипция папиной и маминой копии гена) будет мало зависеть от температуры, а возможность функционирования тех же аллелей на уровне белка может критически зависеть от температуры. При некоторых температурах белок (например, аллель 1) будет работать, а другой (аллель 2) не будет работать. Как только мы выдвигаемся на более высокий уровень в реализации фенотипа, появляется больше возможностей для влияния окружающей среды на проявление признака.

И наоборот, чем ближе мы продвигаемся к генотипу, тем предсказуемее связь между генотипом и фенотипом.

Аллельные гены. Итак, мы установили, что гетерозиготные особи имеют в каждой клетке два гена - А и а , отвечающие за развитие одного и того же признака. Гены, определяющие альтернативное развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом, называют аллельными генами или аллелями. Любой диплоидный организм, будь то растение, животное или человек, содержит в каждой клетке два аллеля любого гена. Исключение составляют половые клетки - гаметы. В результате мейоза количество хромосом в них уменьшается в 2 раза, поэтому каждая гамета имеет лишь по одному аллельному гену. Аллели одного гена располагаются в одном месте гомологичных хромосом.

Схематически гетерозиготная особь обозначается так:
Гомозиготные особи при подобном обозначении выглядят так:
или , но их можно записать и как АА и аа .

Фенотип и генотип. Рассматривая результаты самоопыления гибридов F 2 , мы обнаружили, что растения, выросшие из желтых семян, будучи внешне сходными, или, как говорят в таких случаях, имея одинаковый фенотип, обладают различной комбинацией генов, которую принято называть генотипом. Таким образом, явление доминирования приводит к тому, что при одинаковом фенотипе особи могут обладать различными генотипами. Понятия «генотип» и «фенотип» очень важные в генетике. Совокупность всех генов организма составляет его генотип. Совокупность всех признаков организма, начиная с внешних и кончая особенностями строения и функционирования клеток и органов, составляет фенотип. Фенотип формируется под влиянием генотипа и условий внешней среды.

Анализирующее скрещивание. По фенотипу особи далеко не всегда можно определить ее генотип. У самоопыляющихся растений генотип можно определить в следующем поколении. Для перекрестно размножающихся видов используют так называемое анализирующее скрещивание. При анализирующем скрещивании особь, генотип которой следует определить, скрещивают с особями, гомозиготными по рецессивному гену, т. е. имеющими генотип аа. Рассмотрим анализирующее скрещивание на примере. Пусть особи с генотипами АА и Аа имеют одинаковый фенотип. Тогда при скрещивании с особью, рецессивной по определяемому признаку и имеющей генотип аа , получаются следующие результаты:

Из этих примеров видно, что особи, гомозиготные по доминантному гену, расщепления в F 1 не дают, а гетерозиготные особи при скрещивании с гомозиготной особью дают расщепление уже в F 1 .

Неполное доминирование. Далеко не всегда гетерозиготные организмы по фенотипу точно соответствуют родителю, гомозиготному по доминантному гену. Часто гетерозиготные потомки имеют промежуточный фенотип, в таких случаях говорят о неполном доминировании (рис. 36). Например, при скрещивании растения ночная красавица с белыми цветками (аа) с растением, у которого красные цветки (АА), все гибриды F 1 имеют розовые цветки (Аа). При скрещивании гибридов с розовой окраской цветков между собой в F 2 происходит расщепление в отношении 1 (красный): 2 (розовый): 1 (белый).

Рис. 36. Промежуточное наследование у ночной красавицы

Принцип чистоты гамет. У гибридов, как мы знаем, объединяются разные аллели, привносимые в зиготу родительскими гаметами. Важно отметить, что разные аллели, оказавшиеся в одной зиготе и, следовательно, в развившемся из нее организме, не влияют друг на друга. Поэтому свойства аллелей остаются постоянными независимо от того, в какой зиготе они побывали до этого. Каждая гамета содержит всегда только один аллель какого-либо гена.

Цитологическая основа принципа чистоты гамет и закона расщепления состоит в том, что гомологичные хромосомы и расположенные в них аллельные гены распределяются в мейозе по разным гаметам, а затем при оплодотворении воссоединяются в зиготе. В процессах расхождения по гаметам и объединения в зиготуаллельные гены ведут себя как независимые, цельные единицы.

  1. Будет ли правильным определение: фенотип есть совокупность внешних признаков организма?
  2. С какой целью проводят анализирующее скрещивание?
  3. Какое, на ваш взгляд, практическое значение имеют знания о генотипе и фенотипе?
  4. Сопоставьте типы наследования генетических признаков при скрещиваниях с поведением хромосом во время мейоза и оплодотворения.
  5. При скрещивании серой и черной мышей получено 30 потомков, из них 14 были черными. Известно, что серая окраска доминирует над черной. Каков генотип мышей родительского поколения? Решение задачи смотрите в конце учебника.
  6. Голубоглазый мужчина, оба родителя которого имели карие глаза, женился на кареглазой женщине, отец у которой имел карие глаза, а мать - голубые. От этого брака родился голубоглазый сын. Определите генотипы всех упомянутых лиц.
Loading...Loading...