В чем преимущества и недостатки гидравлических электростанций. Достоинства и недостатки малой гидроэнергетики

На волне интереса к возобновляемым источникам энергии в мире то тут, то там возводятся плотины гидроэлектростанций. некоторые из них поражают воображение своей грандиозностью. Но, отдавая должное смелым инженерным решениям, следует помнить, что удерживаемые плотинами огромные массы воды таят в себе страшную разрушительную мощь

Строго говоря, строительство плотин и дамб не обязательно имеет отношение к гидроэнергетике. Московские плотины просто поднимают уровень некогда почти обмелевшей реки, а, например, Краснодарское водохранилище на реке Кубань создано для нужд ирригации. Но все же подавляющее большинство крупных гидросооружений в России связано с энергетической отраслью. Со времен утверждения в 1921 году IX Всероссийским съездом Советов плана ГОЭЛРО наша страна активно использует энергию малых и великих рек.

Коварное дно


Если не вдаваться в подробности классификации, плотины электростанций делятся в основном на гравитационные и арочные. Гравитационная плотина - как правило, имеющая треугольное поперечное сечение - строится из грунта, камня или бетонных блоков. Из самого термина «гравитационная» видно, что такая плотина удерживает массу воды за счет своей тяжести, - течение реки не в силах сдвинуть эту громадину с места, и вода начинает подниматься. Арочные плотины используются в горной местности. За счет своей формы (по сути это фрагмент купола, выгнутого в сторону напирающей воды) такая плотина передает нагрузку на борта каньона. Арочная плотина сложнее в строительстве, но экономичнее в смысле расхода материалов. При высоте 100 м гравитационная плотина должна иметь основание шириной 70-80 м, а у арочной плотины такой же высоты ширина основания составит всего около 5 м. Есть также плотины смешанного гравитационно-арочного типа (пример - плотина крупнейшей в России Саяно-Шушенской ГЭС) и контрфорсного типа.
Чтобы плотина выполняла свою задачу и не преподносила неприятных сюрпризов, требуется тщательное геологическое исследование створов реки в месте, где предполагается строительство ГЭС. История знает случаи, когда плотину ставили на дно, в котором находились карстовые полости. После наполнения водохранилища вода просачивалась в эти полости, а затем находила выход в нижнем бьефе. Водохранилище начинало сливаться, и, чтобы не допустить этого, в карстовые пустоты пришлось закачивать бетон, объем которого был примерно равен объему самой плотины.
Идеальным для строительства плотины является скальное дно, менее предпочтительна скользкая глинистая почва. В последнем случае при недостаточном весе плотины она может просто «уехать» по течению.


Вода дырочку найдет


Плотина ГЭС - структурно сложное сооружение. В ее состав входят глухие плотины - через гребень которых вода не переливается (или, во всяком случае, не должна переливаться); станционные плотины, через которые вода из водохранилища поступает в камеры с турбинами, вращающими валы электрогенераторов; и водосливные плотины, через которые сбрасывается вода для регулирования уровня воды в верхнем бьефе (в водохранилище).
Система водосброса - один из ключевых элементов гидроузла. Уровень воды в перекрытой плотиной реке может значительно колебаться в зависимости от времени года и климатических факторов, таких как таяние снега и льда в верховьях или ливневые дожди. Неконтролируемый сброс воды из верхнего бьефа может привести к разрушению всей конструкции.
Пожалуй, большинство драматических событий, связанных с разрушением плотин, вызвано именно переполнением верхнего бьефа из-за попадания туда большого количества талых или ливневых вод. Последний подобный случай произошел в марте этого года в Индонезии, когда построенная еще голландскими колониальными властями в 1933 году дамба не выдержала натиска тропических ливней. Вырвавшаяся на свободу вода стала причиной гибели около ста человек. Одна из самых масштабных аварий на гидротехнических сооружениях произошла в США в 1976 году. Сначала в земляной дамбе, перекрывавшей реку Тетон (штат Айдахо), появилась небольшая течь. Поначалу на нее не обратили особого внимания, затем, когда течь стала заметнее, ее попытались ликвидировать с помощью строительной техники. В конце концов бульдозеры пришлось бросить, чтобы спасти человеческие жизни. Прорвав наконец земляную плотину, вода размыла ее за считаные минуты.

Хищные моря

Водохранилища - пожалуй, главная «ахиллесова пята» гидроэнергетики. И именно вокруг них ведутся непрекращающиеся дискуссии между энергетиками и экологами. Очевидно, что появившиеся в результате строительства гидроузлов искусственные «моря» нельзя считать лишь неизбежным злом. Водохранилища имеют большое значение для организации судоходства и рыбопромысла, служат резервуарами питьевой воды и выполняют рекреационную функцию (как, например, каскад водохранилищ водораздельного бьефа канала им. Москвы). Часто они помогают решить проблемы паводковых наводнений в районах, лежащих ниже по течению перекрытой реки. Однако цена этому - превращение суши в дно, серьезные перемены в экологической ситуации и даже изменения климата. Нередко затапливаются леса и анаэробное гниение на отмелях больших масс растительной органики приводит к выбросу в атмосферу метана - одного из «парниковых газов». Этот факт несколько портит имидж гидроэнергетики как альтернативы сжиганию ископаемого топлива.

Дитя первых пятилеток - гигантское Рыбинское водохранилище - поглотило, как известно, огромную издревле населенную территорию в самом центре Европейской России. «Море» заполнило собой Молго-Шекснинскую низменность, образовавшуюся в результате таяния ледника. Под водой оказались сотни сел и целый город Молога, церкви, монастыри, кладбища и даже три сотни жителей, не пожелавших покинуть свою «малую родину». «Лес рубят - щепки летят» - таков был один из основополагающих принципов сталинской политики. В более гуманные времена, при строительстве других водохранилищ Волжского каскада, рукотворным морям уже не давали разливаться бесконтрольно, отдавая их береговую линию на откуп рельефу. Однако единственный способ остановить разлив воды - обваловка, то есть сооружение по установленным границам водохранилища земляных дамб. На практике это означает, что находящиеся рядом с дамбой дома, дороги или промышленные объекты оказываются ниже уровня водоема и обеспечение их безопасности становится отдельной проблемой. Речь идет не только о поддержании дамб в исправном техническом состоянии, но и об ограждении этих гидросооружений от, так сказать, человеческого фактора. Сейчас вдоль дамб некоторых водохранилищ Волжского каскада ведется милицейское патрулирование и возводятся заборы.


Плотина и вечность

Нельзя забывать и еще об одной проблеме, связанной с появлением водохранилищ. Под давлением огромной массы влага просачивается в окружающий грунт, поднимая уровень грунтовых вод. Иногда этим можно воспользоваться: например, в районах, где регулярно пересыхают колодцы, запруживание местной речки поможет их наполнить. Однако, когда речь идет о макромасштабах, подъем грунтовых вод приводит к заболачиванию обширных территорий и другим малоприятным последствиям. В частности, одним из аргументов экологов, выступающих против строительства Эвенкийской ГЭС на реке Нижняя Тунгуска, является вероятная инфильтрация воды в полости, оставшиеся от проводившихся в этом районе подземных ядерных взрывов. В этом случае может возникнуть опасность попадания радиоактивных материалов в Нижнюю Тунгуску и Енисей. Создание водохранилищ также может привести к затоплению подземных коммуникаций, подвалов зданий и шахт на прилегающей территории. Разумеется, при проектировании гидроузлов подобные побочные эффекты стараются просчитывать, однако действие водной стихии не может быть предсказуемым на все 100%.

У крупных гидросоружений есть одна уникальная особенность. В отличие от шахты или карьера, их нельзя забросить, отдать на произвол сил природы. Либо плотину надо вечно поддерживать в рабочем состоянии (что практически вряд ли выполнимо), либо по истечении определенного срока гидроузел должен быть демонтирован, а водохранилище слито или превращено в замкнутый водоем. Только так можно избежать катастрофических последствий стихийного разрушения. В этом, кстати, просматриваются общие черты атомной энергетики и гидроэнергетики. Стоимость вывода из эксплуатации АЭС сравнима с затратами на ее постройку. То же самое касается и гидроэлектростанций. Сооруженные в СССР плотины ГЭС рассчитаны на работу в течение ста лет. С одной стороны, век - это немало, но с другой - некоторые гидроэлектростанции, например Жигулевская ГЭС на Волге, уже выработали около половины срока, а то и больше. Таким образом, вопрос о том, что делать с отработавшими свое гидросооружениями и во сколько обойдется их демонтаж или капитальная реконструкция, встанет уже перед ныне живущими поколениями.
Очевидно, что работа с огромными массами воды требует грамотных инженерных решений, технологической дисциплины и ответственности. К счастью, у нас в России - в стране, где ГЭС вносят огромный вклад в энергетическое хозяйство, - есть и технологии, и высококлассные специалисты, способные развивать гидроэнергетику на принципах эффективности, экологичности и безопасности.




Электрические станции являются важнейшей частью жизни каждого человека, поскольку они преобразуют энергию в электроэнергию. Одна станция представляет собой целый комплекс мероприятий, искусственных и естественных подсистем, которые служат для превращения и распределения всех видов источников энергии. Весь процесс можно разделить на несколько этапов:

  1. Процесс добычи и переработки первичного источника энергии.
  2. Доставка на электростанцию.
  3. Процесс превращения первичной энергии во вторичную.
  4. Распределение вторичной (электрической или между потребителями.

Электроэнергетика включает в себя производство энергии на станции и последующую ее доставку по линиям электропередач. Такие важнейшие элементы данной цепочки, как электрические станции различаются по типу первичных источников, которые доступны в данном регионе.

Рассмотрим некоторые виды преобразовательных процессов подробнее, а также достоинства и недостатки каждого из них.

Относятся к группе традиционной энергетики и занимают значительную долю выработки электроэнергии мирового масштаба (приблизительно 40%). Достоинства и недостатки ТЭС приведены в следующей таблице:

Используют в качестве первичного источника энергии например, водохранилища и реки. Достоинства и недостатки ГЭС также сведены в таблицу.

Атомные электростанции (АЭС) - комплекс установок и мероприятий, предназначенных для которая выделяется в результате деления атомных ядер, в тепловую, а далее и в Важнейшим элементом данной системы является а также комплекс сопутствующих устройств. В таблице ниже приведены достоинства и недостатки АЭС.

Не менее важным этапом становится транспортировка топливных ресурсов к электростанции. Этот процесс может быть осуществлен несколькими способами, у каждого из которых есть свои достоинства и недостатки. Рассмотри основные способы транспортировки:

  • Водный транспорт. Доставка осуществляется при помощи танкеров и бункеровщиков.
  • Автомобильный транспорт. Транспортировка осуществляется в цистернах. Возможность перевозить только жидкое или газообразное топливо определяет существующие достоинства и недостатки автомобильного транспорта.
  • Железнодорожный транспорт. Доставка в цистернах и открытых вагонах на большие расстояния.
  • Подвесные и редко используются и только на очень короткие расстояния.

На волне интереса к возобновляемым источникам энергии в мире то тут, то там возводятся плотины гидроэлектростанций. некоторые из них поражают воображение своей грандиозностью. Но, отдавая должное смелым инженерным решениям, следует помнить, что удерживаемые плотинами огромные массы воды таят в себе страшную разрушительную мощь

Редакция ПМ


Считаясь одним из экологически чистых способов производства энергии, гидроэнергетика оказывает при этом серьезное воздействие на природу. И у этого воздействия есть как положительные, так и отрицательные стороны. На фото — плотина Чиркейской ГЭС в Дагестане


Ингури ГЭС Плотина на грузинской реке Ингури может считаться гордостью советской гидроэнергетики: это самая высокая в мире бетонная плотина арочного типа. Ее высота составляет 272 м. Строительство плотины было начато еще в 1961 году, а полностью завершено лишь в 1987-м. В настоящее время Ингури ГЭС поделена между Грузией и недавно признанной Россией Абхазией, которой принадлежит 40% вырабатываемой энергии


Зейская ГЭС Плотина, воздвигнутая на реке Зея в Амурской области (1965−1980), относится к уникальному для России массивно-контрфорсному типу. Она разделила реку на два не связанных друг с другом бьефа — конструкцией не предусмотрены ни шлюзы, ни рыбоподъемники. Водохранилище имеет большое противопаводковое значение.


Бурейская ГЭС Возводится на реке Бурея в Амурской области. Строительство этой ГЭС началось еще в 1978 году, однако работы на ней продолжаются и по сей день. С конца 1980-х до конца 1990-х годов строительство было фактически законсервировано. Проектом на станции предусмотрено шесть гидроагрегатов, из которых два уже введены в строй, а третий должен заработать в этом году. Плотина относится к гравитационному типу и имеет длину 736 м при высоте 140 м. Водохранилищем затоплены значительные участки леса, в основном в Хабаровском крае


Америка: плотина Гувера Названная в честь президента Герберта Гувера самая высокая в США плотина гравитационно-арочного типа перекрыла реку Колорадо в 1936 году. Цели строительства — гидроэнергетика, орошение полей, улучшение условий судоходства, борьба с наводнениями


Америка: Панамский канал Одно из самых известных гидросооружений в мире — Панамский канал (завершен в 1914 году). Суда проводят через шлюзы канала с помощью локомотивов-буксиров, которые движутся по зубчатым рельсам, проложенным вдоль шлюза


Америка: «дыра славы» Арочная плотина Monticello Dam, перекрывающая калифорнийскую речку Пьюта-Крик, ничем особо не знаменита, кроме «дыры славы». Такое странное название носит нерегулируемый водослив, выполненный в виде бетонной воронки. Когда уровень в водохранилище Берриесса превышает проектный, вода переливается через края воронки, создавая красивое, но немного жутковатое зрелище


Парад гигантов: ГЭС «Итайпу» Одна из крупнейших в мире плотин перегородила реку Парана вблизи бразильско-парагвайской границы. Для строительства плотины, сделанной из земли, камня и бетона, в скалах был пробит 150-метровый канал, по которому воду реки отвели в строну от русла. После высыхания русла в выбранном створе в 1979 году началось возведение плотины. Ее общая длина составляет 7235 м.

Строго говоря, строительство плотин и дамб не обязательно имеет отношение к гидроэнергетике. Московские плотины просто поднимают уровень некогда почти обмелевшей реки, а, например, Краснодарское водохранилище на реке Кубань создано для нужд ирригации. Но все же подавляющее большинство крупных гидросооружений в России связано с энергетической отраслью. Со времен утверждения в 1921 году IX Всероссийским съездом Советов плана ГОЭЛРО наша страна активно использует энергию малых и великих рек.

Коварное дно

Если не вдаваться в подробности классификации, плотины электростанций делятся в основном на гравитационные и арочные. Гравитационная плотина — как правило, имеющая треугольное поперечное сечение — строится из грунта, камня или бетонных блоков. Из самого термина «гравитационная» видно, что такая плотина удерживает массу воды за счет своей тяжести, — течение реки не в силах сдвинуть эту громадину с места, и вода начинает подниматься. Арочные плотины используются в горной местности. За счет своей формы (по сути это фрагмент купола, выгнутого в сторону напирающей воды) такая плотина передает нагрузку на борта каньона. Арочная плотина сложнее в строительстве, но экономичнее в смысле расхода материалов. При высоте 100 м гравитационная плотина должна иметь основание шириной 70−80 м, а у арочной плотины такой же высоты ширина основания составит всего около 5 м. Есть также плотины смешанного гравитационно-арочного типа (пример — плотина крупнейшей в России Саяно-Шушенской ГЭС) и контрфорсного типа.

Чтобы плотина выполняла свою задачу и не преподносила неприятных сюрпризов, требуется тщательное геологическое исследование створов реки в месте, где предполагается строительство ГЭС. История знает случаи, когда плотину ставили на дно, в котором находились карстовые полости. После наполнения водохранилища вода просачивалась в эти полости, а затем находила выход в нижнем бьефе. Водохранилище начинало сливаться, и, чтобы не допустить этого, в карстовые пустоты пришлось закачивать бетон, объем которого был примерно равен объему самой плотины.

Идеальным для строительства плотины является скальное дно, менее предпочтительна скользкая глинистая почва. В последнем случае при недостаточном весе плотины она может просто «уехать» по течению.

Вода дырочку найдет

Плотина ГЭС — структурно сложное сооружение. В ее состав входят глухие плотины — через гребень которых вода не переливается (или, во всяком случае, не должна переливаться); станционные плотины, через которые вода из водохранилища поступает в камеры с турбинами, вращающими валы электрогенераторов; и водосливные плотины, через которые сбрасывается вода для регулирования уровня воды в верхнем бьефе (в водохранилище).

Система водосброса — один из ключевых элементов гидроузла. Уровень воды в перекрытой плотиной реке может значительно колебаться в зависимости от времени года и климатических факторов, таких как таяние снега и льда в верховьях или ливневые дожди. Неконтролируемый сброс воды из верхнего бьефа может привести к разрушению всей конструкции.

Пожалуй, большинство драматических событий, связанных с разрушением плотин, вызвано именно переполнением верхнего бьефа из-за попадания туда большого количества талых или ливневых вод. Последний подобный случай произошел в марте этого года в Индонезии, когда построенная еще голландскими колониальными властями в 1933 году дамба не выдержала натиска тропических ливней. Вырвавшаяся на свободу вода стала причиной гибели около ста человек. Одна из самых масштабных аварий на гидротехнических сооружениях произошла в США в 1976 году. Сначала в земляной дамбе, перекрывавшей реку Тетон (штат Айдахо), появилась небольшая течь. Поначалу на нее не обратили особого внимания, затем, когда течь стала заметнее, ее попытались ликвидировать с помощью строительной техники. В конце концов бульдозеры пришлось бросить, чтобы спасти человеческие жизни. Прорвав наконец земляную плотину, вода размыла ее за считаные минуты.

Хищные моря

Водохранилища — пожалуй, главная «ахиллесова пята» гидроэнергетики. И именно вокруг них ведутся непрекращающиеся дискуссии между энергетиками и экологами. Очевидно, что появившиеся в результате строительства гидроузлов искусственные «моря» нельзя считать лишь неизбежным злом. Водохранилища имеют большое значение для организации судоходства и рыбопромысла, служат резервуарами питьевой воды и выполняют рекреационную функцию (как, например, каскад водохранилищ водораздельного бьефа канала им. Москвы). Часто они помогают решить проблемы паводковых наводнений в районах, лежащих ниже по течению перекрытой реки. Однако цена этому — превращение суши в дно, серьезные перемены в экологической ситуации и даже изменения климата. Нередко затапливаются леса и анаэробное гниение на отмелях больших масс растительной органики приводит к выбросу в атмосферу метана — одного из «парниковых газов». Этот факт несколько портит имидж гидроэнергетики как альтернативы сжиганию ископаемого топлива.

Дитя первых пятилеток — гигантское Рыбинское водохранилище — поглотило, как известно, огромную издревле населенную территорию в самом центре Европейской России. «Море» заполнило собой Молго-Шекснинскую низменность, образовавшуюся в результате таяния ледника. Под водой оказались сотни сел и целый город Молога, церкви, монастыри, кладбища и даже три сотни жителей, не пожелавших покинуть свою «малую родину». «Лес рубят — щепки летят» — таков был один из основополагающих принципов сталинской политики. В более гуманные времена, при строительстве других водохранилищ Волжского каскада, рукотворным морям уже не давали разливаться бесконтрольно, отдавая их береговую линию на откуп рельефу. Однако единственный способ остановить разлив воды — обваловка, то есть сооружение по установленным границам водохранилища земляных дамб. На практике это означает, что находящиеся рядом с дамбой дома, дороги или промышленные объекты оказываются ниже уровня водоема и обеспечение их безопасности становится отдельной проблемой. Речь идет не только о поддержании дамб в исправном техническом состоянии, но и об ограждении этих гидросооружений от, так сказать, человеческого фактора. Сейчас вдоль дамб некоторых водохранилищ Волжского каскада ведется милицейское патрулирование и возводятся заборы.

Плотина и вечность

Нельзя забывать и еще об одной проблеме, связанной с появлением водохранилищ. Под давлением огромной массы влага просачивается в окружающий грунт, поднимая уровень грунтовых вод. Иногда этим можно воспользоваться: например, в районах, где регулярно пересыхают колодцы, запруживание местной речки поможет их наполнить. Однако, когда речь идет о макромасштабах, подъем грунтовых вод приводит к заболачиванию обширных территорий и другим малоприятным последствиям. В частности, одним из аргументов экологов, выступающих против строительства Эвенкийской ГЭС на реке Нижняя Тунгуска, является вероятная инфильтрация воды в полости, оставшиеся от проводившихся в этом районе подземных ядерных взрывов. В этом случае может возникнуть опасность попадания радиоактивных материалов в Нижнюю Тунгуску и Енисей. Создание водохранилищ также может привести к затоплению подземных коммуникаций, подвалов зданий и шахт на прилегающей территории. Разумеется, при проектировании гидроузлов подобные побочные эффекты стараются просчитывать, однако действие водной стихии не может быть предсказуемым на все 100%.

У крупных гидросоружений есть одна уникальная особенность. В отличие от шахты или карьера, их нельзя забросить, отдать на произвол сил природы. Либо плотину надо вечно поддерживать в рабочем состоянии (что практически вряд ли выполнимо), либо по истечении определенного срока гидроузел должен быть демонтирован, а водохранилище слито или превращено в замкнутый водоем. Только так можно избежать катастрофических последствий стихийного разрушения. В этом, кстати, просматриваются общие черты атомной энергетики и гидроэнергетики. Стоимость вывода из эксплуатации АЭС сравнима с затратами на ее постройку. То же самое касается и гидроэлектростанций. Сооруженные в СССР плотины ГЭС рассчитаны на работу в течение ста лет. С одной стороны, век — это немало, но с другой — некоторые гидроэлектростанции, например Жигулевская ГЭС на Волге, уже выработали около половины срока, а то и больше. Таким образом, вопрос о том, что делать с отработавшими свое гидросооружениями и во сколько обойдется их демонтаж или капитальная реконструкция, встанет уже перед ныне живущими поколениями.

Очевидно, что работа с огромными массами воды требует грамотных инженерных решений, технологической дисциплины и ответственности. К счастью, у нас в России — в стране, где ГЭС вносят огромный вклад в энергетическое хозяйство, — есть и технологии, и высококлассные специалисты, способные развивать гидроэнергетику на принципах эффективности, экологичности и безопасности.

Преимущества ГЭС:

Использование возобновляемой энергии.

Очень дешевая электроэнергия.

Работа не сопровождается вредными выбросами в атмосферу.

Быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки ГЭС:

Затопление пахотных земель

Строительство ведется там, где есть большие запасы энергии воды

На горных реках опасны из-за высокой сейсмичности районов

С энергетической точки зрения имеют ряд преимуществ по сравнению со всеми типами ТЭС и АЭС.

Во-первых, они вообще не нуждаются в топливе, благодаря чему их энергия в 5-6 раз дешевле энергии ТЭС и 8-10 раз дешевле энергии АЭС. КПД гидроэлектростанций очень высок, 80-90%.

Во-вторых, ГЭС обладают исключительно высокими маневренными свойствами: работающий гидроагрегат может увеличить мощность практически мгновенно, а запуск остановленного гидроагрегата занимает всего 1-2 мин. Неравномерность графика нагрузки практически не влияет на экономичность работы ГЭС. Эти качества делают ГЭС незаменимыми для работы в пиковой части графика, при этом выравниваются нагрузки на ТЭС и снижается их расход топлива.

Бесопорные энергетические преимущества ГЭС не дают тем не менее основания противопоставлять их электростанциям других типов.

В ряде стран и экономических районов гидроэнергоресурсы либо недостаточны, либо отдалены от центров потребления энергии.

Выработка энергии на ГЭС резко колеблется в зависимости от водности года.

Начальные затраты на строительство ГЭС чаще всего выше, чем на ТЭС, а сроки строительства длиннее. Не всегда оправданы затраты, связанные с затоплениями при создании водохранилища. В то же время эксплуатация ГЭС значительно дешевле тепловых и атомных электростанций. Отсутствуют затраты на топливо, экологические платежи за выбросы, меньше расходы на ремонт, небольшая численность персонала.

Эти обстоятельства и определили место ГЭС в мировой энергетике. Доля участия ГЭС в энергетическом хозяйстве ряда стран различная, что связано с различной структурой топливно-энергетического баланса и различными традициями в развитии энергетики. Гидроэлектростанции обеспечивают порядка 20% российской и мировой выработки электроэнергии. Во многих странах доля гидроэнергетики существенно выше. Например, в наиболее близкой к России по природным условиям Канаде ГЭС производят 58% электроэнергии, в Бразилии - 86%, в Норвегии, известной жесткостью экологического законодательства, - 99%.

Гидроэнергетика является компонентом и другой важнейшей отрасли народного хозяйства - водного хозяйства.

Вода, особенно пресная, которая составляет всего 2,5% мировых запасав воды,- незаменимое природное богатство, одна из основ жизни на Земле. Доступные запасы пресной воды находятся в основном в реках, среднегодовой сток которых во всем мире составляет около 39000 км3.

Если в прошлые столетия в большинстве районов планеты вода казалась бесплатным и неисчерпаемым природным даром, то в XX веке стремительный рост промышленности и городского населения при-

вел к тому, что вода стала рассматриваться как недешевое и в ряде случаев дефицитное сырье.

Использование водных ресурсов неразрывно связано с мероприятиями по их охране, прежде всего для обеспечения необходимого качества воды. При осуществления гидротехнического строительства, вносящего значительные изменения в природные условия, должны тщательно учитываться все факторы его воздействия на окружающую среду.

Как и любой другой способ производства энергии, применение малых и мини-ГЭС имеет как преимущества, так и недостатки.

Среди экономических, экологических и социальных преимуществ объектов малой гидроэнергетики можно назвать следующие. Их создание повышает энергетическую безопасность региона, обеспечивает независимость от поставщиков топлива, находящихся в других регионах, экономит дефицитное органическое топливо. Сооружение подобного энергетического объекта не требует крупных капиталовложений, большого количества энергоемких строительных материалов и значительных трудозатрат, относительно быстро окупается. Необходимо отметить, что реконструкция выведенной ранее из эксплуатации малой ГЭС обойдется в 1,5- 2 раза дешевле. Объекты малой энергетики не требуют организации больших водохранилищ с соответствующим затоплением территории и колоссальным материальным ущербом.

Кроме того, есть возможности для снижения себестоимости возведения за счет унификации и сертификации оборудования. Современные станции просты в конструкции и полностью автоматизированы, т.е. не требуют присутствия человека при эксплуатации. Вырабатываемый ими электрический ток соответствует требованиям ГОСТа по частоте и напряжению, причем станции могут работать как в автономном режиме, т.е. вне электросети энергосистемы региона, так и в составе этой электросети. А полный ресурс работы станции - не менее 40 лет (не менее 5 лет до капитального ремонта).

Одним из основных достоинств объектов малой гидроэнергетики является экологическая безопасность. В процессе их сооружения и последующей эксплуатации вредных воздействий на свойства и качество воды нет. Водоемы можно использовать и для рыбохозяйственной деятельности, и как источники водоснабжения населения. В процессе выработки электроэнергии ГЭС не производит парниковых газов и не загрязняет окружающую среду продуктами горения и токсичными отходами, что соответствует требованиям Киотского протокола. Подобные объекты не являются причиной наведенной сейсмичности и сравнительно безопасны при естественном возникновении землетрясений. Они не оказывают отрицательного воздействия на образ жизни населения, на животный мир и местные микроклиматические условия.

Значительным преимуществом также является отсутствие нарушения природного ландшафта и окружающей среды в процессе строительства и на этапе эксплуатации, а также практически полная независимость от погодных условий. Обеспечивается подача потребителю дешевой электроэнергии в любое время года. ??????????????? ????????????? ???????

Кроме того, турбины мини-ГЭС можно также использовать в качестве гасителей энергии на перепадах высот питьевых и других трубопроводов, предназначенных для перекачки различных видов жидких продуктов.

Возможные проблемы, связанные с созданием и использованием объектов малой гидроэнергетики, менее выражены, но о них также следует сказать.

Как любой локализованный источник энергии, в случае изолированного применения, объект малой гидроэнергетики уязвим с точки зрения выхода из строя, в результате чего потребители остаются без энергоснабжения (решением проблемы является создание совместных или резервных генерирующих мощностей -- ветроагрегата, когенерирующей мини-котельной на биотопливе, фотоэлектрической установки и т.д.).

Наиболее распространенный вид аварий на объектах малой гидроэнергетики -- разрушение плотины и гидроагрегатов в результате перелива через гребень плотины при неожиданном подъеме уровня воды и несрабатывании запорных устройств. В некоторых случаях МГЭС способствуют заиливанию водохранилищ и оказывают влияние на руслоформирующие процессы.

Существует определенная сезонность в выработке электроэнергии (заметные спады в зимний и летний период), приводящая к тому, что в некоторых регионах малая гидроэнергетика рассматривается как резервная (дублирующая) генерирующая мощность.

Среди факторов, тормозящих развитие малой гидроэнергетики, большинство экспертов называют неполную информированность потенциальных пользователей о преимуществах применения небольших гидроэнергетических объектов; недостаточную изученность гидрологического режима и объемов стока малых водотоков; низкое качество действующих методик, рекомендаций и СНиПов, что является причиной серьезных ошибок в расчетах; неразработанность методик оценки и прогнозирования возможного воздействия на окружающую среду и хозяйственную деятельность; слабую производственную и ремонтную базу предприятий, производящих гидроэнергетическое оборудование для МГЭС, а массовое строительство объектов малой гидроэнергетики возможно лишь в случае серийного производства оборудования, отказа от индивидуального проектирования и качественно нового подхода к надежности и стоимости оборудования -- по сравнению со старыми объектами, выведенными из эксплуатации.

Источники энергии

Источниками энергии для малой гидроэнергетики являются:

* небольшие реки, ручьи,

* естественные перепады высот на озерных водосбросах и на оросительных каналах ирригационных систем,

* технологические водотоки (промышленные и канализационные сбросы),

* перепады высот питьевых трубопроводов, систем водоподготовки и других трубопроводов, предназначенных для перекачки различных видов жидких продуктов.

Loading...Loading...