Физика и химия микромира. Теоретическая неорганическая химия

, молекулярных орбиталей , орбитальных взаимодействий , активации молекул и др. методами физики и математики. Теоретическая химия объединяет принципы и представления, общие для всех ветвей химической науки. В рамках теоретической химии происходит систематизация химических законов, принципов и правил, их уточнение и детализация, построение иерархии. Центральное место в теоретической химии занимает учение о взаимосвязи строения и свойств молекулярных систем . На заре своего развития теоретическая химия была представлена исключительно квантовой химией и была призвана проверять существующие концепции на их соответствие квантовой механике , постоянно производить обновление известных концепций. Однако сложность изучаемых объектов и явлений, а также трудности применения квантовой механики для предсказания и описания химических процессов и явлений, привели к созданию нового раздела теоретической химии - математической химии . С помощью методов математической химии теоретическая химия может создавать собственные теории без обязательного привлечения квантовой механики. В последние годы из математической химии выделилась и сформировалась как самостоятельный раздел теоретической химии со своим понятийным аппаратом, объектами и методами исследования хемоинформатика , основанная на применении методов информатики и искусственного интеллекта (в частности, методов интеллектуального анализа данных и машинного обучения) к решению задач в области химии. К важнейшим разделам современной теоретической химии могут быть отнесены квантовая химия , математическая химия , хемоинформатика , теоретическая химическая кинетика и разделы физической химии . Современная теоретическая химия может быть примерно разделена на исследование химической структуры и исследование химической динамики. Положения теоретической химии используются при изучении сложных систем, например в молекулярной физике .

Ветви теоретической химии

Квантовая химия Применение квантовой механики к химии. Математическая химия Описание и предсказание молекулярной структуры и её динамики, а также построение новой химической теории используя математические методы, без обязательного использования квантовой механики. Теоретическая физическая химия Применение методов теоретической физики для исследования законов, определяющих строение и химические превращения химических веществ при различных внешних условиях. Теоретическая химическая кинетика Теоретическое исследование динамических систем связанных с химическими реакциями и соответствующих им дифференциальных уравнений. Вычислительная химия Применение компьютеров для решения химических задач и проблем. Хемоинформатика Использование информационных методов к решению задач в области химии. Молекулярное моделирование Методы для моделирования молекулярных структур, обязательно не обращаясь к квантовой механике. Молекулярная динамика Применение классической механики для моделирования движение ядер ансамбля атомов и молекул. Молекулярная механика : Моделирование внутри - и межмолекулярных взаимодействий и их поверхностей потенциальных энергий через сумму сил взаимодействия.

См. также

Напишите отзыв о статье "Теоретическая химия"

Литература

  • Глесстон С. 632c.
  • Дей М. К., Селбин Дж. Теоретическая неорганическая химия. М.: Химия, 1971. 416с.
  • Дей М. К., Селбин Дж. Теоретическая неорганическая химия. Пер. с англ. 3-ие изд. М.: Химия, 1976. 568c.
  • Корольков Д. В. Теоретическая химия. Том 1. Общие принципы и концепции. М: Академкнига, 2007. 463с. ISBN 978-5-94628-283-3
  • Корольков Д. В., Скоробогатов Г. А. Теоретическая химия: Учебное пособие. 2-е изд., перераб. и доп. Издательский дом Санкт-Петербургского университета, 2005. 653 с. ISBN 978-5-288-03639-2
  • Корольков Д. В., Скоробогатов Г. А . Основы теоретической химии. М. Академия, 2004. 352с. ISBN 5-7695-1442-6
  • Пальм В. А. Введение в теоретическую органическую химию. М.: Высшая школа, 1974. 448с.
  • Днепровский А. С., Темникова Т. И. Теоретические основы органической химии. Л. .: Химия, 1979; 2-ое изд. Л.: Химия, 1991. 558с.
  • Николаев Л. А. Теоретическая химия. М.: Высшая школа, 1984. 400c.
  • Татевский В. М. Квантовая механика и теория строения молекул. М.: Изд-во МГУ, 1965. 162с.
  • Бейдер Р. Атомы в молекулах. Квантовая теория. М.: Мир, 2001. 532c. ISBN 5-03-003363-7
  • Кузнецов В. И. М.: Высшая школа, 1989.
  • Кузнецов В. И. 327с.

Ссылки

УДК
Статьи
  • (Chemistry Explained)
Журналы

Отрывок, характеризующий Теоретическая химия

И отвернувшись от него, я стала смотреть, как горело то, что всего ещё минуту назад было моим ласковым, мудрым отцом... Я знала, что он ушёл, что он не чувствовал этой бесчеловечной боли... Что сейчас он был от нас далеко, уносясь в неизвестный, чудесный мир, где всё было спокойно и хорошо. Но для меня это всё ещё горело его тело. Это горели те же родные руки, обнимавшие меня ребёнком, успокаивая и защищая от любых печалей и бед... Это горели его глаза, в которые я так любила смотреть, ища одобрения... Это всё ещё был для меня мой родной, добрый отец, которого я так хорошо знала, и так сильно и горячо любила... И именно его тело теперь с жадностью пожирало голодное, злое, бушующее пламя...
Люди начали расходиться. На этот раз казнь для них была непонятной, так как никто не объявил, кем был казнимый человек, и за что он умирал. Никто не потрудился сказать ни слова. Да и сам приговорённый вёл себя довольно странно – обычно люди кричали дикими криками, пока от боли не останавливалось сердце. Этот же молчал даже тогда, когда пламя пожирало его... Ну, а любая толпа, как известно, не любит непонятное. Поэтому многие предпочитали уйти «от греха подальше», но Папские гвардейцы возвращали их, заставляя досматривать казнь до конца. Начиналось недовольное роптание... Люди Караффы подхватили меня под руки и насильно впихнули в другой экипаж, в котором сидел сам «светлейший» Папа... Он был очень злым и раздражённым.
– Я так и знал, что он «уйдёт»! Поехали! Здесь нечего больше делать.
– Помилуйте! Я имею право хотя бы уж видеть это до конца! – возмутилась я.
– Не прикидывайтесь, Изидора! – зло отмахнулся Папа, – Вы прекрасно знаете, что его там нет! А здесь просто догорает кусок мёртвого мяса!.. Поехали!
И тяжёлая карета тронулась с площади, даже не разрешив мне досмотреть, как в одиночестве догорало земное тело безвинно казнённого, чудесного человека... моего отца... Для Караффы он был всего лишь «куском мёртвого мяса», как только что выразился сам «святейший отец»... У меня же от такого сравнения зашевелились волосы. Должен же был, даже для Караффы, существовать какой-то предел! Но, видимо, никакого предела и ни в чём, у этого изверга не было...
Страшный день подходил к концу. Я сидела у распахнутого окна, ничего не чувствуя и не слыша. Мир стал для меня застывшим и безрадостным. Казалось – он существовал отдельно, не пробиваясь в мой уставший мозг и никак не касаясь меня... На подоконнике, играясь, всё также верещали неугомонные «римские» воробьи. Внизу звучали человеческие голоса и обычный дневной шум бурлящего города. Но всё это доходило до меня через какую-то очень плотную «стену», которая почти что не пропускала звуков... Мой привычный внутренний мир опустел и оглох. Он стал совершенно чужим и тёмным... Милого, ласкового отца больше не существовало. Он ушёл следом за Джироламо...
Но у меня всё ещё оставалась Анна. И я знала, что должна жить, чтобы спасти хотя бы её от изощрённого убийцы, звавшего себя «наместником Бога», святейшим Папой... Трудно было даже представить, если Караффа был всего лишь его «наместником», то каким же зверем должен был оказаться этот его любимый Бог?!. Я попыталась выйти из своего «замороженного» состояния, но как оказалось – это было не так-то просто – тело совершенно не слушалось, не желая оживать, а уставшая Душа искала только покоя... Тогда, видя, что ничего путного не получается, я просто решила оставить себя в покое, отпустив всё на самотёк.
Ничего больше не думая, и ничего не решая, я просто «улетела» туда, куда стремилась моя израненная Душа, чтобы спастись... Чтобы хотя бы чуточку отдохнуть и забыться, уйдя далеко от злого «земного» мира туда, где царил только свет...
Я знала, что Караффа не оставит меня надолго в покое, несмотря на то, что мне только что пришлось пережить, даже наоборот – он будет считать, что боль ослабила и обезоружила меня, и возможно именно в этот момент попробует заставить меня сдаться, нанеся какой-то очередной ужасающий удар...
Дни шли. Но, к моему величайшему удивлению, Караффа не появлялся... Это было огромным облегчением, но расслабляться, к сожалению, не позволяло. Ибо каждое мгновение я ожидала, какую новую подлость придумает для меня его тёмная, злая душа...
Боль с каждым днём потихонечку притуплялась, в основном, благодаря пару недель назад происшедшему и совершенно меня ошеломившему неожиданному и радостному происшествию – у меня появилась возможность слышать своего погибшего отца!..
Я не смогла увидеть его, но очень чётко слышала и понимала каждое слово, будто отец находился рядом со мной. Сперва я этому не поверила, думая, что просто брежу от полного измождения. Но зов повторился... Это и, правда, был отец.
От радости я никак не могла придти в себя и всё боялась, что вдруг, прямо сейчас, он просто возьмёт и исчезнет!.. Но отец не исчезал. И понемножку успокоившись, я наконец-то смогла ему отвечать...
– Неужели это и правда – ты!? Где же ты сейчас?.. Почему я не могу увидеть тебя?
– Доченька моя... Ты не видишь, потому, что совершенно измучена, милая. Вот Анна видит, я был у неё. И ты увидишь, родная. Только тебе нужно время, чтобы успокоиться.
Чистое, знакомое тепло разливалось по всему телу, окутывая меня радостью и светом...
– Как ты, отец!?. Скажи мне, как она выглядит, эта другая жизнь?.. Какая она?
– Она чудесна, милая!.. Только пока ещё непривычна. И так не похожа на нашу бывшую, земную!.. Здесь люди живут в своих мирах. И они так красивы, эти «миры»!.. Только у меня не получается ещё. Видимо, пока ещё рано мне... – голос на секунду умолк, как бы решая, говорить ли дальше.
– Меня встретил твой Джироламо, доченька... Он такой же живой и любящий, каким был на Земле... Он очень сильно скучает по тебе и тоскует. И просил передать тебе, что так же сильно любит тебя и там... И ждёт тебя, когда бы ты ни пришла... И твоя мама – она тоже с нами. Мы все любим и ждём тебя, родная. Нам очень не хватает тебя... Береги себя, доченька. Не давай Караффе радости издеваться над тобою.

Статья на конкурс «био/мол/текст»: Сто лет назад Гилберт Н. Льюис рисовал химические формулы с точками, обозначающими электроны, а Нильс Бор формулировал постулаты квантовой теории и объяснял строение атома. Эта статья о том, как эволюционировали представления ученых о химической связи, как эти представления помогли увидеть структуру молекул, а знания о молекулярной структуре помогли развитию теории, и как ученые пришли к искусству моделирования живых белков в действии.

Генеральным спонсором конкурса, согласно нашему краудфандингу , стал предприниматель Константин Синюшин , за что ему огромный человеческий респект!

Спонсором приза зрительских симпатий выступила фирма «Атлас ».

Спонсор публикации этой статьи - Артур Залевский.

Философские атомы

То, что все тела состоят из атомов, ученые подозревали еще в античности. «Атом » по-гречески означает «неделимый». В XVIII веке появились первые косвенные доказательства того, что все тела не являются сплошными и непрерывными, но состоят из мельчайших частиц, дальше которых дробить вещество невозможно. Более того, было обнаружено, что частицы эти могут соединяться друг с другом не как попало, а только в определенных пропорциях и в определенном порядке .

Однако до конца XIX века атом был скорее умозрительным, абстрактным понятием. Большинство химиков пользовалось им вынужденно, например, когда говорили, что «частица» воды содержит один атом кислорода и два атома водорода или что атомы соединяются в частицу в определенном порядке и влияют друг на друга. Слово «атом» в этом контексте означало не физическую частицу, а некую порцию вещества, реагирующую с другими веществами в определенном соотношении. Из тех же времен происходит термин «эквивалент », означающий количество вещества, реагирующего в точности без остатка с заданным количеством другого вещества в определенной реакции. Понятно, что для разных реакций эквиваленты одного и того же вещества были разными, что создавало изрядную путаницу. Были и «мастодонты» типа Вильгельма Оствальда (Нобелевская премия по химии 1909 г.), не признававшие концепции атомов вообще .

Оствальд умудрялся обходиться в своих сочинениях без атомов в смысле частиц, и следы этого неприятия мы находим в данном им и принятым международным сообществом определении единицы количества вещества - моля : «Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг ». Более современное, но пока еще не принятое Международным бюро мер и весов, определение моля базируется на фиксированном значении постоянной Авогадро (моль - это 6,022140857·10 23 частиц ) и не зависит от определения единицы массы. А Оствальд смог изменить свое отношение к атомистической теории после опытов Жана Перрена по броуновскому движению.

Тем временем химикам-органикам часто приходилось сталкиваться с веществами, имеющими одинаковый состав, но совершенно разные свойства - изомерами . Когда в головах ученых устоялась теория, гласящая, что свойства вещества зависят от того, в каком порядке соединились его атомы, умозрительным атомам пришлось приписать форму. В частности, атом углерода стали считать тетраэдрическим . Тогда же появились первые шаростержневые модели молекул, такие как на рисунке 1.

Но что (кроме палочек или крючочков на деревянных модельках) заставляет атомы соединяться друг с другом? В 1898 г. Людвиг Больцман выдвинул идею об особых «чувствительных областях» на поверхности атома. Атомы образуют молекулу, только если они контактируют друг с другом этими чувствительными областями - тогда между ними возникает притяжение, чувствительные области перекрываются (sic!) и образуется химическая связь (рис. 2).

Атомы становятся реальными

Тем временем к началу XX века были открыты положительные ионы с разным соотношением заряда и массы (1886 г., Ойген Гольдштейн) и частица, несущая элементарный отрицательный заряд, - электрон . Жан Батист Перрен в 1908 г. доказал существование молекул . И, наконец, в 1909 г. Эрнест Резерфорд провел свой знаменитый эксперимент с бомбардировкой золотой фольги α-частицами . В этом эксперименте он установил, что атом состоит из маленького положительно заряженного ядра, вокруг которого летают электроны. Так что для физиков атомы были вовсе не фикцией.

Я намеренно не называю имени «первооткрывателя» электрона, т.к. его обнаружили и идентифицировали по соотношению заряда и массы в 1896 г. и в катодных лучах (Джозеф Томсон , Джон Таунсенд , Г.А. Уилсон), и в β-излучении радиоактивных материалов (Анри Беккерель), а Роберт Милликен с Харви Флетчером в 1909 г. и - независимо от них - Абрам Фёдорович Иоффе в 1911 г. измерили его абсолютный заряд.

Одним из первых, кто заподозрил, что в деле химической связи замешаны электроны, был Гилберт Ньютон Льюис . Был он в большей степени физиком, чем химиком, занимался термодинамикой, интересовался только-только возникшей квантовой теорией, так что про электроны был в курсе. Кандидатская диссертация Льюиса была посвящена электрохимическим потенциалам, и впоследствии он стажировался у В. Нернста в области электрохимии. Квантовая физика в сочетании с электрохимией дала интересный эффект.

Мультфильм «Мальчик и его атом», нарисованный молекулами окиси углерода на медной подложке

Но вернемся к статье Льюиса 1916 г. Она оказала большое влияние на юного студента Орегонского Кулинарного техникума Сельскохозяйственного колледжа Лайнуса Полинга , который в 1922 г. с дипломом химика-технолога отправился в Калтех изучать рентгеновскую кристаллографию, а в 1926 г., уже защитив диссертацию, получил грант на стажировку в Европе. Там он работал в Мюнхене у Арнольда Зоммерфельда , в Копенгагене у Нильса Бора и в Цюрихе у Эрвина Шрёдингера. Неплохую подготовку давали в американских сельхозтехникумах, не правда ли?

В дело вступают физики

В 1927 г. Эйвинд Буррау точно решил из первых принципов задачу об электроне в поле двух ядер, т.е. о молекулярном ионе H 2 + . Эта работа показала, что задачу о химической связи можно решать методами квантовой механики, хотя задействованные при этом математические приемы оказались неприменимыми в общем случае. И в том же году Вальтер Гайтлер и Фриц Лондон приближенно решили задачу о молекуле водорода H 2 , сконструировав волновую функцию молекулы (спасибо Шрёдингеру) из двух волновых функций отдельных атомов водорода в виде их суммы и разности, и таким образом показали, как образуется ковалентная связь. Качественный результат оказался очень похожим на решение задачи про H 2 + . И при этом Льюис оказался прав! Электроны в молекуле H 2 действительно принадлежат обоим атомам в равной мере, хотя картинки, где два точки-электрона сидят промеж двух ядер, получиться не может в принципе: все-таки электрон обладает волновой природой и не может сидеть на одном месте. Вместо этого наблюдают увеличение плотности вероятности нахождения электрона на линии, соединяющей атомы (рис. 8).

Рисунок 8. Плотность вероятности обнаружения электрона в молекуле H 2 , вид сбоку и сверху (черные точки - ядра, красное - электронная плотность)

Немного позже, в 1929 г., задача о молекуле водорода была решена еще раз, другим методом. В 1926–1927 гг. Фридрих Хунд и в 1927–1928 гг. Роберт Малликен ввели понятие молекулярной орбитали - волновой функции одного электрона в поле ядер. А в 1929 г. Джон Леннард-Джонс предложил строить молекулярные орбитали в виде линейных комбинаций атомных орбиталей и решать уравнение Шрёдингера для них. Тогда для описания молекулы нужно взять все атомные орбитали и «просто» построить из них нужные линейные комбинации. При таком описании все электроны в молекуле в той или иной степени принадлежат всем атомам. Этот подход получил название теории молекулярных орбиталей .

Тем временем, идея Гайтлера и Лондона тоже оказалась плодотворной, ведь таким образом можно описывать любые ковалентные связи, а целую молекулу - как совокупность ковалентных связей между соседними атомами. Нужно «просто» взять волновые функции электрона на одном атоме связи и на другом атоме и построить их комбинацию. Метод получил название теории валентных связей . Вот только у атома углерода, например, есть два s- электрона и два p -электрона, какой взять, чтобы образовать связь C-H в метане, если вспомнить, что все C-H связи в метане эквивалентны и направлены по углам тетраэдра? Лайнус Полинг в 1931 г. предположил, что в присутствии атомов-партнеров (в данном случае, водорода) орбитали углерода гибридизуются и превращаются из сферической s и трех гантелеобразных p в вытянутые фиговины, направленные по углам тетраэдра. Эти гибридные орбитали имеют вид (s + √3p ), где за p -орбиталь берется та, что направлена вдоль соответствующей C-H связи. Из четырех исходных орбиталей получаются четыре новые, т.н. sp 3 -гибридные, и на каждой сидит по одному электрону, готовому образовать связь с атомом водорода (рис. 9).

В 1998 г. Джон Попл вместе с Вальтером Коном (помним, он в 1964 г. разработал теорию функционала плотности) получил Нобелевскую премию по химии за развитие вычислительных методов.

Когда молекул много

Химическая связь - это, конечно, замечательно. Но еще в 1873 г. Ян Дидерик Ван-дер-Ваальс предположил, что между молекулами тоже существует взаимодействие . Оно достаточно слабое, так что не приводит к образованию химических связей , но достаточно сильное, чтобы вызвать отклонение поведения газов от идеального, а также чтобы способствовать конденсации газа в жидкость и кристаллизации жидкости. А когда полвека спустя стали изучать структуру и свойства биомолекул, то обнаружили, что практически все процессы, идущие с их участием, основаны на нековалентных межмолекулярных взаимодействиях. Ван-дер-Ваальс предположил, что эти взаимодействия имеют электростатическую природу.

Для электростатических взаимодействий (двух точечных зарядов, точечного заряда и диполя, двух диполей и т.п. - см. рисунок 12) формулы были известны уже в XIX в. Однако к взаимодействию молекул их применил в 1915 г. Виллем Хендрик Кеесом .

а

б

в

г

д

е

Рисунок 12. Электростатические взаимодействия. Взаимодействия: а - ион-ион; б - ион-постоянный диполь; в - взаимодействие постоянных диполей; г - ион-наведенный диполь; д - постоянный диполь-наведенный диполь; е - взаимодействие флуктуирующих диполей.

Постоянные диполи могут поляризовать молекулы - так образуются наведенные (индуцированные) диполи. Индукционное взаимодействие изучал Петер Дебай в 1920–1921 гг.

Изучение взаимодействия наведенных диполей между собой и с мгновенными (флуктуирующими) диполями оказалось более сложной задачей, но ее решил в 1930 г. уже известный нам Фриц Лондон.

Первые работы по молекулярной динамике были сделаны в 1955 г. Э. Ферми, Дж. Паста, С. Уламом, в 1959 г. Б. Алдером и Т. Уэйнрайтом, в 1960 г. Дж. Гибсоном с сотрудниками и в 1964 г. А. Раманом. Конечно, это были еще не биомолекулы, а просто динамика жестких сфер (атомов) в ван-дер-ваальсовом потенциале - атомных жидкостей и кристаллов. Все расчеты проводили на компьютере.

Одним из первых, кто применил молекулярную динамику для моделирования ДНК и белков , был Майкл Левитт в начале 1970-х гг. (Нобелевская премия по химии 2013 г. вместе с Арье Варшелом и Мартином Карплусом) , .

Для моделирования динамики биомолекул, особенно если требуется «отследить» в реальном времени довольно длительный процесс типа фолдинга крупных белков, необходимы огромные вычислительные мощности. До недавнего времени выйти за микросекундный масштаб не хватало сил даже у суперкомпьютеров, но правильное вложение частного капитала позволило преодолеть миллисекундный рубеж (необходимый минимум для фиксации белковых сворачиваний-разворачиваний) и построить модели работы ряда белков. О достижениях миллиардера Дэвида Шоу и его суперкомпьютера Anton можно прочитать здесь: «

Химические реакции и фотопроцессы моделируют с помощью квантовой механики - неэмпирической или полуэмпирической . Однако, как мы помним, биомолекулы слишком велики и не влезают в квантовую химию даже на самых современных суперкомпьютерах. Выход нашли Арье Варшел, Майкл Левит и Вальтер Тиль в 1976 г.

Обычно исследователей интересует реакционный центр - это ограниченная область большой молекулы, где происходит все интересное: химическая реакция или поглощение/испускание света. Этот реакционный центр моделируют методами квантовой химии. Все остальное - это окружение, и его моделируют методами молекулярной механики, поскольку его роль в исследуемом процессе вторична. Такая схема называется QM/MM (Quantum Mechanics/Molecular Mechanics ) (рис. 17). В вычислительном отношении такая задача вполне подъемна, возможности расчета лимитируются только размером QM-части. Основную проблему - как аккуратно сшить QM- и MM-части - удалось решить авторам метода.

QM/MM успешно комбинируется с молекулярной динамикой, чтобы получить реалистичные картины химических реакций и фотопроцессов в активном центре.

Закончилось ли на QM/MM развитие теоретических методов для моделирования биомолекул? Определенно нет. С увеличением мощности суперкомпьютеров стало возможно использовать в QM-части сложные продвинутые методы квантовой химии. Работают также над улучшенным описанием взаимодействия QM- и MM-частей.

А что, если в системе нет какого-то одного важного активного центра, зато есть много однотипных участков, ведущих себя схожим образом? Например, аминокислоты при упаковке белка, азотистые основания в ДНК или сахара в углеводах? Для этого есть методы т.н. огрубления (coarse-graining ) . Уже знакомые нам А. Варшел и М. Левитт в тех же работах середины 1970-х предложили схему, согласно которой целые аминокислотные остатки заменяются некими жесткими фигурами (помните вырезанные из железных листов азотистые основания в модели ДНК Уотсона и Крика?). Для жестких фигур задают потенциалы взаимодействия с прочими компонентами системы и в динамике получают траектории (рис. 18). Такие огрубленные расчеты позволяют гонять динамику на больших временах или исследовать системы большего размера. При необходимости огрубленный фрагмент можно «оживить» обратно, вернув ему атомную структуру, и посмотреть на него более подробно.

Методы моделирования, разработанные для биомолекул, давно уже перекочевали и в обычную химию, и в науку о материалах, где успешно помогают решать задачи, связанные с окружением активного центра или морфологией материала.

Вся эта поразительная история от первой реалистичной модели атома до моделирования структуры и функций огромных биомолекул и белковых комплексов уложилась меньше чем в столетие!

Литература

  1. van’t Hoff J.H. (1874). A suggestion looking to the extension into space of the structural formulas at present used in chemistry and a note upon the relation between the optical activity and the chemical constitution of organic compounds . Archives neerlandaises des sciences exactes et naturelles . 9 , 445–454;
  2. Perrin J.-B. (1926). Discontinuous structure of matter . Сайт Nobelprize.org ;. ;;
  3. Драг-дизайн: как в современном мире создаются новые лекарства ;
  4. Виртуальные тропы реальных лекарств ;
  5. Порог чувствительности зрительного восприятия ;
  6. Kmiecik S., Gront D., Kolinski M., Wieteska L., Dawid A.E., Kolinski A. (2016). Coarse-grained protein models and their applications . Chem. Rev. 116 , 7898–7936.

ПРОГРАММА УГЛУБЛЕННОГО КУРСА ХИМИИ

ДЛЯ IX – XI КЛАССОВ

Миссюль Борис Викторович

Санкт-Петербург

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

Класс

Наименование разделов и тем Количество учебных часов
Теоретическая неорганическая химия
Электронное строение вещества.
Ионная связь.
Природа ковалентности
Ковалентные соединения неметаллов с кратными связями элемент–элемент.
Ковалентные соединения непереходных металлов (Hg, Tl, Ge–Sn–Pb, Sb, Bi).
Соединения с промежуточным типом химической связи.
Химия водных и неводных растворов.
Теория химической связи в соединениях переходных металлов.
“Несвязывающие электроны”, их влияние на свойства молекул.
Устойчивость ковалентных соединений переходных металлов.
Представления о каркасных и кластерных соединениях.
Соединения поздних переходных металлов (подгруппы кобальта, никеля и меди).
Лантаноиды и актиноиды (f-элементы).
Невалентные взаимодействия.
Химия элементов
Водород.
Элементы первой главной подгруппы (щелочные металлы)
Металлы четвертой побочной подгруппы (титан, цирконий, гафний).
Металлы пятой побочной подгруппы (ванадий, ниобий, тантал)
Металлы шестой побочной подгруппы (хром, молибден, вольфрам).
Металлы седьмой побочной подгруппы (марганец, технеций, рений).
Металлы восьмой побочной подгруппы (железо, кобальт, никель, рутений, родий, палладий, осмий, иридий, платина).
Металлы первой побочной подгруппы (медь, серебро, золото).
Металлы второй побочной подгруппы (цинк, кадмий, ртуть).
Металлы третьей побочной подгруппы (скандий, иттрий, лантан, лантаноиды, актиноиды).
Инертные газы.

Класс

Наименование разделов и тем Количество учебных часов
Введение в химическую термодинамику
Основные понятия химической термодинамики.
Первый закон термодинамики.
Второй закон термодинамики.
Термодинамические функции.
Химическое и фазовое равновесия
Условия химического равновесия
Фазовые равновесия.
Фазовые диаграммы двухкомпонентных систем.
Растворы.
Насыщенный раствор и растворимость
Давление насыщенных паров над раствором.
Коллигативные свойства растворов.
Взаимодействие растворителя с веществом.
Теории кислот и оснований.
Методы очистки веществ.
Термодинамические аспекты получения “абсолютно чистых веществ”
Введение в электрохимию.
Окислительно-восстановительные процессы и степень окисления.
Стандартные электродные потенциалы.
Введение в химическую кинетику.
Кинетические уравнения.
Зависимость скорости реакции от температуры.
Параллельные процессы.

Класс

Наименование разделов и тем Количество учебных часов
Теоретическая органическая химия
Строение органических соединений
Основы стереохимии органических соединений
Физические свойства органических соединений как функция структуры
Классификация органических реакций
Природа и характер влияния структурных и внешних факторов на реакционную способность органических соединений
Делокализация заряда как фактор стабилизации заряженных частиц.
Пространственные эффекты.
Внутримолекулярное взаимодействие функциональных групп как фактор, влияющий на реакционную способность.
Нуклеофильное замещение у насыщенного атома углерода.
Элиминирование.
Гетеролитическое присоединение.
Нуклеофильное присоединение к кратным связям углерод–гетероатом
Электрофильное присоединение.
Электрофильное замещение в алифатическом ряду.
Теория ароматичности.
Ароматическое электрофильное замещение
Ароматическое нуклеофильное замещение
Гомолитические реакции.
Перициклические реакции.
Реакции, идущие через карбены.
Ион-радикальные реакции.
Органическая химия
Принципы классификации органических соединений
Алканы и циклоалканы
Алкены и алкины.
Спирты и простые эфиры.
Органические пероксиды и озониды
Органогалогениды
Металлорганические соединения
Альдегиды и кетоны
Карбоновые кислоты и их производные
Амины.
Алифатические диазосоединения
Органические нитро- и нитрозосоединения, нитриты и нитраты
Органические производные серы
Фосфорорганические соединения
Кремнийорганические соединения
Ароматические углеводороды
Ароматические нитросоединения
Ароматические амины и диазосоединения
Ароматические сульфокислоты
Фенолы
Ароматические гетероциклы
Терпены.
Стероиды
Углеводы
Белки и пептиды
Нуклеиновые кислоты
Липиды.
Принципы установления строения и анализа органических соединений
Принципы органического синтеза

Класс

ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

1. Электронное строение вещества.
Разделение ядерного и электронного движения. Волновые функции, электронные состояния. Правила Хунда для атомов и молекул. Представление об орбиталях, симметрия орбиталей. Размеры атомов и ионов. Энергия ионизации и сродство к электрону. Периодическая система элементов.

2. Ионная связь.
Типы ионных решеток. Проблемы существования “обособленных молекул с ионными связями внутри молекул”. Константа Маделунга. Энергия кристаллической решетки. Цикл Борна–Габера. Термодинамика ионных решеток. Область существования ионных соединений. Стехиометрия и стереохимия соединений с ионным типом связей. Модель жестких сфер. Влияние поляризуемости электронных оболочек на строение и свойства ионных решеток. Термодинамические и кинетические закономерности поведения соединений с ионным типом связей. Водные растворы, растворы в аммиаке, электриды, расплавы. Представление о ионных парах. Соединения со сложными катионами и анионами.

3. Природа ковалентности
Соединения с типичными ковалентными связями. Геометрические структуры ковалентных соединений. Направление валентных связей. Простейшие теоретические модели, описывающие строение ковалентных соединений. Метод молекулярных орбиталей. Диамагнитные и парамагнитные молекулы. Бирадикалы и триплетные состояния. Двухцентровые и многоцентровые молекулярные орбитали. Закономерности геометрического строения многоатомных нелинейных молекул. Модель отталкивания электронных пар валентной оболочки. Представления Гиллеспи ОЭПВО. Представление о s- и p-связях. Гибридизационные представления. Теория резонанса. Распределение электронов в молекулах; степени окисления атомов. Размеры атомов в молекулах. Химическая связь в простейших электроноизбыточных и электронодефицитных молекулах (B, Al, P, S). Закономерности строения и поведения соединений с одинарными ковалентными связями.

4. Ковалентные соединения неметаллов с кратными связями элемент–элемент.
Углеводороды с кратными связями С–С. Кислородные соединения неметаллов. Молекулы азота и ее аналоги С=О и ацетилен. Соединения элементов с азотом. Диамагнитные и парамагнитные соединения неметаллов.

5. Ковалентные соединения непереходных металлов (Hg, Tl, Ge–Sn–Pb, Sb, Bi).
Методы синтеза, строение свойства, Соединения с простыми и кратными связями металл–элемент и металл–металл. Стехиометрия и стереохимия соединений; энергия связей. Закономерности изменения энергии связей внутри периодов и групп. Внутримолекулярные динамические превращения соединений.

6. Соединения с промежуточным типом химической связи.
Ковалентная сильнополярная связь. Соединения бора и алюминия. Простейшие представители. Структура в зависимости от присоединенных групп. Самоассоциация соединений. Энергия связей и энергия ассоциации. Динамические превращения соединений в растворах и твердой фазе.

7. Химия водных и неводных растворов.
Кислоты и основания; частные и обобщенные представления. Сильные, слабые и чрезвычайно слабые кислоты и основания. Методы оценки силы кислот и оснований. Принцип ЖМКО; кинетические и термодинамические проявления. Необычные свойства воды; водородная связь. Соединения с водородной связью. Протонные и апротонные растворители. Неполярные растворители. Сольватация ионов и нейтральных молекул; энергия сольватации. Термодинамика процесса растворения; энтропийный взгляд.

8. Теория химической связи в соединениях переходных металлов.
Природа связи и энергия связи; вклад ковалентной составляющей. Теория кристаллического поля. Сильное и слабое поле. Октаэдрические, тетраэдрические и плоскоквадратные комплексы. Спектрохимический ряд. Магнитные и спектральные свойства. Причина “бесполезности” ТКП для непереходных элементов. Метод МО; модель углового перекрывания.

9. “Несвязывающие электроны”, их влияние на свойства молекул.
Сэндвичевые комплексы; карбонильные производные–органические соединения.

10. Устойчивость ковалентных соединений переходных металлов.
Устойчивость молекул в газовой и конденсированной фазах. Квантово-химическая устойчивость. Термодинамическая и кинетическая устойчивость. Хелат-эффект. Изомерия комплексов.

11. Представления о каркасных и кластерных соединениях.
Роль симметрии молекул. Модели электронного строения. Сходство и различие в строении соединений переходных и непереходных элементов. Бесконечные решетки и их отличие от кластерных соединений. Решетки пониженной размерности; одно- и двумерные соединения.

12. Соединения ранних переходных металлов III, IV и V групп.

13. Соединения металлов середины переходных рядов (VI и VII групп и подгруппы железа).

14. Соединения поздних переходных металлов (подгруппы кобальта, никеля и меди).
Общая для пп. 12, 13, 14 схема:
Монометаллические галогениды и халькогениды.
Получение, строение и свойства.
Производные с кислород- и азотсодержащими лигандами.
Полиядерные кластерные соединения: условия возникновения, строение, свойства.
Органические комплексные соединения, типы соединений, синтез, строение и свойства.
Полиядерные соединения.

15. Лантаноиды и актиноиды (f-элементы).
Свойства атомов и ионов. Комплексные и металлорганические соединения. Электронное строение, природа связи, спектральные и магнитные характеристики.

16. Невалентные взаимодействия.
Межмолекулярные силы. Кулоновские взаимодействия. Ион-дипольные, ион-ионные взаимодействия. Дисперсионные силы. Ионные, ковалентные и ван-дер-ваальсовы радиусы. Типы и энергии межмолекулярных и внутримолекулярных невалентных взаимодействий. Влияние внутримолекулярных невалентных взаимодействий на геометрию молекул; конформации и конфигурации молекул. Проявление невалентных взаимодействий в свойствах веществ.

ХИМИЯ ЭЛЕМЕНТОВ

1. Периодический закон элементов Д.И.Менделеева.

1.1. Периодический закон, как основа развития неорганической химии. Современное состояние, перспективы развития. Границы периодической системы.

1.2. Периодическое изменение свойств элементов и их соединений. Связь с электронной конфигурацией атома. Радиусы атомов и ионов, закономерности их изменения. Потенциалы ионизации, сродство к электрону. Сопоставление свойств соединений элементов главных и побочных подгрупп.

2. Водород.

2.1. Электронные конфигурации атома и молекулы водорода (ТМО). Размеры атома и иона. Изотопный состав, химические и физические свойства. Прочность молекулы.

2.2. Гидриды. Классификация в зависимости от типа связи. Гидриды с трехцентровой связью (электронно-дефицитные молекулы). Растворимость водорода в металлах. Химические и физические свойства гидридов. Применение.

2.3. Вода, строение молекулы. Водородная связь. Лед и жидкая вода. Физические и химические свойства. Свойства воды как растворителя. Очистка воды.

3. Элементы седьмой главной подгруппы (галогены).

3.1. Общая характеристика подгруппы. Электронная конфигурация атомов. Изменение ковалентных радиусов, значений потенциалов ионизации и энергий сродства к электрону.

3.2. Сравнение свойств элементов, простых веществ и ионов. Проявляемые степени окисления, изотопы, получение свободных галогенов, изменение свойств в подгруппе. Межгалогенные соединения.

3.3. Галогеноводороды, кислородсодержащие кислоты галогенов, кислородные соединения. Строение, свойства и методы получения.

4. Элементы шестой главной подгруппы (кислород,халькогены).

4.1. Кислород, электронные конфигурации атома и молекулы (ММО).

4.2. Изотопы, парамагнетизм и устойчивость молекулы и молекулярных ионов кислорода.

4.3. Оксиды металлов и неметаллов. Строение, характер связи, свойства. Нестехиометрические оксиды, координационные числа кислорода в его соединениях. Перекиси, надперекиси, субнадперекиси.

4.4. Озон, его строение, свойства, получение, применение. Озониды. Перекись водорода. Термическая устойчивость, кислотная диссоциация. Окислительно-восстановительные свойства. Надсерная кислота, надугольная кислота.

4.5. Электронные конфигурации атомов серы, селена и теллура. Закономерности изменения ковалентных радиусов, энергий ионизации и сродства к электрону. Особенности строения простых веществ, полиморфизм.

4.6. Водородные соединения халькогенов и их получение. Изменение восстановительных свойств, прочности и кислотного характера в ряду водородных соединений халькогенов.

4.7. Халькогениды металлов. Условия соосаждения и растворения сульфидов металлов.

4.8. Кислородные кислоты халькогенов. Получение, строение и свойства. Термическая устойчивость, кислотный характер, окислительно-восстановительные свойства. Сравнение свойств соединений со степенями окисления +4 и +6. Промышленное получение серной кислоты. Олеум. Пиросерная кислота, пиросульфаты. Хлорсульфоновая, нитрозилсерная кислоты. Свойства, получение. Термическая устойчивость сульфатов и бисульфатов. Хлористый тионил, хлористый сульфурил, гидросернистая, тиосерная, политионовые кислоты и их соли. Соединения халькогенов с галогенами.

5. Элементы пятой главной подгруппы (азот, фосфор, мышьяк, сурьма, висмут).

5.1. Закономерности изменения ковалентных радиусов, потенциалов ионизации, сродства к электрону. Проявляемые степени окисления и изменение их устойчивости по подгруппе. Устойчивость молекулы азота. Физические и химические свойства азота. Методы связывания азота. Полиморфизм фосфора.

5.2. Гидриды элементов пятой группы. Строение, донорные свойства, дипольный момент, прочность молекулы, восстановительный характер, изменение температур плавления и кипения. Гидрат окиси аммония, соли аммония, термическая устойчивость, гидролиз. Гидразин, гидроксиламин, азотистоводородная кислота. Особенности соединений азота.

5.3. Кислородные кислоты элементов пятой главной подгруппы. Сравнение свойств кислородных кислот. Геометрия молекул. Координационные числа. Сульфиды, тиосоли.

5.4. Оксиды элементов пятой группы. Получение, свойства, строение.

6. Элементы четвертой главной подгруппы (углерод, кремний, германий, олово, свинец).

6.1. Степени окисления, изменение устойчивости соединений с высшей и низшей степенями окисления. Строение и свойства простых веществ.

6.2. Строение и свойства гидридов, галогенидов, оксидов. Изменение устойчивости, окислительно-восстановительных свойств, кислотно-основного характера. Строение и свойства карбонатов и силикатов. Типы силикатов. Алюмосиликаты. Особенности соединений олова(II) и свинца (II). Сульфаты и тиосоли германия, олова и свинца.

7. Элементы третьей главной подгруппы (бор, алюминий, галлий, индий, таллий).

7.1. Устойчивость валентных состояний. Кислотно-основные и окислительно-восстановительные свойства гидроксосоединений и геометрия по подгруппе. Координационные Числа. Бинарные соединения: галогениды, оксиды, гидриды. Электроннодефицитные молекулы с трехцентровой связью. Методы получения, свойства.

8. Элементы второй главной подгруппы (бериллий, магний, кальций, стронций, барий, радий).

8.1. Свойства, строение и получение металлов второй главной подгруппы. Выделение из природного сырья.

8.2. Свойства гидроокисей. Соли бериллия и беррилаты. Их гидролиз. Основные и комплексные карбонаты бериллия. Оксиацетат бериллия. Галогениды бериллия.

8.3. Соединения магния и щелочноземельных элементов. Окислы, гидроокиси, галогениды. Магнезиальный цемент. Сульфаты. Гидриды кальция, стронция, бария. Малорастворимые соли бериллия, магния и щелочноземельных металлов. Получение безводных нитратов, галогенидов, сульфатов. Изменение термической устойчивости.

9. Элементы первой главной подгруппы (щелочные металлы)
Изменение в подгруппе радиусов и энергий ионизации. Получение щелочных металлов из природного сырья. Основные соединения щелочных металлов: оксиды, пероксиды, гидриды, гидроксиды, галогениды, сульфаты, нитраты, карбонаты. Фосфаты. Их получение. Синтез соды, поташа. Малорастворимые соли щелочных металлов.


Похожая информация.


ТЕОРЕТИЧЕСКАЯ ХИМИЯ

После усвоения памятью известного количества фактов из неорганической химии появляется потребность обобщить их, осветить идеей совокупность приобретенных химических представлений. Это было бы очень легко сделать, если бы существовала уже готовая, строго научная теория химии; но химические теории, которые мы имеем, относятся только к частям науки, к тому или другому ее отделу, и до сих пор никто еще не пытался создать общую теорию, которая обняла бы всю науку во всей ее целости. Таким образом, в настоящее время теоретическая химия, насколько она существует, составляется из нескольких отделов, довольно различных и, между тем, мало и слабо между собой связанных; поэтому под химической теорией должно разуметь покамест не более как собрание нескольких общих законов, на точном изучении которых должна быть основана и, вероятно, будет впоследствии основана собственно теория химии. Отделов теоретической химии, по крайней мере, три: а) стехиометрия; в) собственно теоретическая химия и с) физическая химия.
а) Стехиометрия (stochiometrie) имеет предметом изучение тех количественных отношений, которые существуют между телами, вступающими друг с другом в реакцию. Сюда, следовательно, войдет: изложение наших понятий о пайных и объемных отношениях, учение о частицах, о количественной части химических явлений вообще и неопределенных соединений в особенности 1). На неопределенные соединения, т. е. такие соединения, в которые тела вступают в неопределенном, изменчивом, количественном отношении, многие привыкли как-то мало обращать внимания, считая их чем-то выходящим из общего порядка. Но химическим соединением вообще называют такое соединение двух или более тел, продукт которого представляется нам однородным, однообразным во всех своих малейших частицах, несмотря на то, что мы знаем, что сами составили его из таких-то и таких-то известных тел. Это есть единственное определение, какое можно дать химическому соединению. В этом отношении неопределенные соединения также совершенно ему подчиняются, а так как они представляют законы более обширные, чем законы для определенных соединений, то последние являются только частным случаем первых.
b) Второй отдел содержит то, что чаще всего известно под названием теоретической химии; здесь всего более встречается теорий. Этот отдел трактует, например, о причинах, законах и ходе химических реакций или превращений тел. Но условия, при которых может происходить та или другая реакция, весьма разнообразны. Во-первых, обоюдное влияние двух тел не всегда достаточно напряженно, чтобы изменить равновесие в положении тех или других частиц, - хотя, без сомнения, все тела действуют друг на друга. Кроме того, изменение физических условий в большей части случаев имеет коренное влияние на смысл одной и той же реакции. Обобщить влияние условия на реакцию - дело первейшей важности; на этом в настоящее время преимущественно остановлено внимание химиков.
c) Но химия занимается не одним только определением количеств тел, в которых они действуют друг на друга, и не одним только разбором смысла реакций. Она останавливается и на продуктах реакций, изучает их физические свойства, сравнивает эти последние со свойствами первоначальных тел. Тот раздел химии, который обобщает подобного рода изучения, носит название физической химии.
Вот все три главных отдела, на которые распадается теоретическая химия; без сомнения, каждый из них сохраняет свою отдельность, несмотря на то, что есть вопросы, которые будут общи двум из этих отделов или даже всем им вместе.
Теоретическая химия -наука очень старинная и в то же время очень новая. Она давняя потому, что всегда, с самых давних времен существовали попытки объяснить химические явления, и очень новая потому, что при всей силе этих стремлений к созданию теории долго не было точных исследований, на которых можно было бы основать общие строго научные выводы. Только тогда и началась теоретическая химия, когда взялись за изучение явлений с измерительными снарядами в руках. Это начало мер и измерений введено было в науку только со времен Лавуазье, которого по справедливости следует назвать основателем теоретической химии. Изложение общего исторического хода учения, хотя и заслуживает внимания, однако не войдет в наш курс как излишнее. Тем не менее, некоторые краткие исторические сведения будут сообщены, насколько это окажется кстати.
Начнем с первого отдела.

Теоретическая химия - учение о строении веществ, их свойствах и превращениях при химических реакциях, объединяющее и систематизирующие принципы и представления, общие для всех разделов химии. В качестве главных подразделов Т. х. выступают квантовая химия , теоретические составляющие физической химии , классическая теория химического строения, математическая химия и молекулярная динамика.

Химия, будучи в основном экспериметальной наукой, всегда стремилась иметь не только эмпирические правила и закономерности, но и некоторую общую теоретическую основу, позволяющую с единых позиций объяснять и предсказывать результаты экспериментов и поведение химических систем в тех или иных условиях. При этом химики всегда стремились достичь понимания химических явлений на том уровне и на том языке, который позволяет связать эти явления со строением соответствующих химических соединений. Именно по этой причине появление квантовой механики вызвало быстрое развитие и теоретической химии как таковой, поскольку она явно рассматривала как строение молекул, так и их поведение при тех или иных воздействиях, в том числе при химических реакциях.

Современная квантовая химия изучает на молекулярном уровне электронное и геометрическое строение химических соединений в различных состояниях, динамику химических превращений в элементарных актах химических реакций, проявления особенностей химического строения веществ в их свойствах и при их превращениях, а также влияние химического строения на биологические свойства соедиений. Её математический аппарат базируется на широко развитых методах решения временного и стационарного уравнения Шрёдингера для систем многих частиц.

При переходе к описанию свойств макроскопических тел вводятся представления статистичекой физики и теоретических разделов физической химии, в частности, в виде феноменологических теорий химической термодинамики и химической кинетики . Эти теории позволяют не только дать основу для количественного описания свойств и превращений веществ, но и учесть влияние внешних условий на характер этих превращений.

Весьма важным разделом Т. х. является классическая теория химического строения, в том числе молекулярное моделирование , поскольку формулируемые в этом разделе закономерности строения и поведения химических веществ в различных условиях дают общую систему знаний о веществе, его строении и превращениях, не прибегая к представлениям квантовой механики. В то же время понимание принципов и закономерностей этой составляющей теоретических представлений современной химии существенно как для квантовой, так и для физической химии. Представления классической теории пронизывают все теории о строении химических соединений, в том числе и достаточно строгих построений квантовой теории, хотя подчас и в неявном виде.

Математическая химия для решения химических задач использует аппарат таких разделов математики, как теория графов, теория перечислений и комбинаторный анализ, и ряд других. Основу для применения этого аппарата составляют закономерности, установленные экспериментально для для свойств и превращений химических соединений. Так, формальная химическая кинетика базируется на математическом аппарате решения систем нелинейных дифференциальных уравнений , анализ закономерностей «структура - свойство» во многом опирается на теорию графов и т. п.

Существенный вклад в становление Т.х. внесло развитие вычислительной техники , позволившей получать надежные количественные результаты на молекулярном уровне. В частности, примерно за последние 2 десятилетия теоретическая химия претерпела значительные изменения, связанные не столько с какими-либо существенными изменениями исходных теоретических посылок, сколько с изменением её вычислительных возможностей при получении надежных расчетных результатов и интерпретации на их основе конкретных экспериментальных результатов. Именно в этом направлении теоретическая химия заметно приблизилась к решению прикладных проблем, причем такому решению, при котором она дает не только достоверное объяснение, но и уверенное предсказание качественного и количественного поведения химических систем. Другими словами, Т. х. в существенной степени приблизилась к состоянию экспериментальной техники высокого уровня, используемой для изучения строения и свойств химических соединений. Без оценочного предварительного квантовохимического расчета практически не обходится большинство синтетических работ во многих разделах современной химии.

1. Степанов Н. Ф. Квантовая механика и квантовая химия. М. «Мир», 2001

2. Корольков Д. В. Теоретическая химия. Том 1. Общие принципы и концепции. М.: Академкнига, 2007.

3. Цирельсон В. Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела. М.: « Бином», 2010

4. Хаускрофт К., Констебл Э. Современный курс общей химии. М.: «Мир», 2002

5. Современная неорганическая химия

6. Молекулярная механика

Loading...Loading...