Основоположником теории химического строения органических веществ является. Теория строения химических соединений А

Для приготовления пищи, красителей, одежды, лекарств человек издавна научился применять различные вещества. С течением времени накопилось достаточное количество сведений о свойствах тех или иных веществ, что позволило усовершенствовать способы их получения, переработки и т.д. И оказалось, что многие минеральные (неорганические вещества) можно получить непосредственно.

Но некоторые используемые человеком вещества не были им синтезированы, потому что их получали из живых организмов или растений. Эти вещества назвали органическими. Органические вещества не удавалось синтезировать в лаборатории. В начале ХIХ века активно развивалось такое учение как витализм (vita – жизнь), согласно которому органические вещества возникают только благодаря «жизненной силе» и создать их «искусственным путём» невозможно.

Но шло время и наука развивалась, появились новые факты об органических веществах, которые шли вразрез с существовавшей теорией виталистов.

В 1824 году немецкий учёный Ф. Вёлер впервые в истории химической науки синтезировал щавелевую кислоту органическое вещество из неорганических веществ (дициана и воды):

(CN) 2 + 4H 2 O → COOH - COOH + 2NH 3

В 1828 Вёллер нагрел циановокислый натрий с серлым аммонием и синтезировал мочевину – продукт жизнедеятельности животных организмов:

NaOCN + (NH 4) 2 SO 4 → NH 4 OCN → NH 2 OCNH 2

Эти открытия сыграли важную роль в развитии науки вообще, а химии в особенности. Учёные-химики стали постепенно отходить от виталистического учения, а принцип деления веществ на органические и неорганические обнаружил свою несостоятельность.

В настоящее время вещества по-прежнему делят на органические и неорганические, но критерий разделения уже немного другой.

Органическими называют вещества , содержащие в своём составе углерод, их ещё называют соединениями углерода. Таких соединений около 3 миллионов, остальных же соединений около 300 тысяч.

Вещества, в состав которых углерод не входит, называют неорганическим и. Но есть исключения из общей классификации: существует ряд соединений, в состав которых входит углерод, но они относятся к неорганическим веществам (окись и двуокись углерода, сероуглерод, угольная кислота и её соли). Все они по составу и свойствам они сходны с неорганическими соединениями.

В ходе изучения органических веществ появились новые сложности: на основании теорий о неорганических веществах нельзя раскрыть закономерности строения органических соединений, объяснить валентность углерода. Углерод в разных соединениях имел различную валентность.

В 1861 году русский ученый А.М. Бутлеров впервые синтезом получил сахаристое вещество.

При изучении углеводородов, А.М. Бутлеров понял, что они представляют собой совершенно особый класс химических веществ. Анализируя их строение и свойства, ученый выявил несколько закономерностей. Они и легла в основу созданной им теории химического строения.

1. Молекула любого органического вещества не является беспорядочной, атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Углерод в органических соединениях всегда четырёхвалентен.

2. Последовательность межатомных связей в молекуле называется еехимическим строениеми отражается одной структурной формулой (формулой строения).

3. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

4. Свойства веществ зависят не только от состава молекул вещества, но от их химического строения (последовательности соединения атомов элементов).

5. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы предвидеть свойства.

6. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Данная теория стала научным фундаментом органической химии и ускорила её развитие. Опираясь на положения теории, А.М. Бутлеров описал и объяснил явление изомерии , предсказал существование различных изомеров и впервые получил некоторые из них.

Рассмотрим химическое строение этана C 2 H 6 . Обозначив валентность элементов чёрточками, изобразим молекулу этана в порядке соединения атомов, то есть напишем нё структурную формулу. Согласно теории А.М. Бутлерова, она будет иметь следующий вид:

Атомы водорода и углерода связаны в одну частицу, валентность водорода равна единице, а углерода четырём. Два атома углерода соединены между собой связью углерод углерод (С С). Способность углерода образовывать С С-связь понятна, исходя из химических свойств углерода. На внешнем электронном слое у атома углерода четыре электрона, способность отдавать электроны такая же, как и присоединять недостающие. Поэтому углерод чаще всего образует соединения с ковалентной связью, то есть за счёт образования электронных пар с другими атомами, в том числе и атомов углерода друг с другом.

Это одна из причин многообразия органических соединений.

Соединения, которые имеют один и тот же состав, но различное строение, называются изомерами. Явление изомерии одна из причин многообразия органических соединений

Остались вопросы? Хотите знать больше о теории строения органических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Тип водорода:

Такие формулы несколько похожи на современные. Но сторонники теории типов не считали их отражающими реальное строение веществ и писали множество различных формул одного соединения в зависимости от химических реакций, которые пытались записать с помощью этих формул. Строение молекул они считали принципиально непознаваемым, что наносило вред развитию науки.

3. Введение Й. Берцелиусом в 1830 г. термина «изомерия » для явления существования веществ одинакового состава, обладающих различными свойствами.

4. Успехи в синтезе органических соединений, в результате которых было развеяно учение о витализме, то есть о «жизненной силе», под влиянием которой якобы в организме живых существ образуются органические вещества:

В 1828 г. Ф. Велер из неорганического вещества (цианата аммония) синтезировал мочевину;

В 1842 г. русский химик Н. Н. Зинин получил анилин;

В 1845 г. немецкий химик А. Кольбе синтезировал уксусную кислоту;

В 1854 г. французский химик М. Бертло синтезировал жиры, и, наконец,

В 1861 г. сам А. М. Бутлеров синтезировал сахароподобное вещество.

5. В середине XVIII в. химия становится более строгой наукой. В результате работ Э. Франкланда и А. Кекуле утвердилось понятие о валентности атомов химических элементов. Кекуле развил представление о четырехвалентности углерода. Благодаря трудам Канниццаро четче стали понятия об атомных и молекулярных массах, уточнены их значения и способы определения.

В 1860 г. более 140 ведущих химиков из разных стран Европы собрались на международный конгресс в г. Карлсруэ. Конгресс стал очень важным событием в истории химии: были обобщены успехи науки и подготовлены условия для нового этапа в развитии органической химии - появления теории химического строения органических веществ А. М. Бутлерова (1861 г.), а также для фундаментального открытия Д. И. Менделеева - Периодического закона и системы химических элементов (1869 г.).

В 1861 г. А. М. Бутлеров выступил на съезде врачей и естествоиспытателей в г. Шпейере с докладом «О химическом строении тел». В нем он изложил основы разработанной им теории химического строения органических соединений. Под химическим строением ученый понимал порядок соединения атомов в молекулах.

Личностные качества А. М. Бутлерова

А. М. Бутлерова отличали энциклопедичность химических знаний, умение анализировать и обобщать факты, прогнозировать. Он предсказал существование изомера бутана, а затем получил его, равно как изомер бутилена - изобутилен.

Бутлеров Александр Михайлович (1828-1886)

Русский химик, академик Петербургской АН (с 1874 г.). Окончил Казанский университет (1849 г.). Работал там же (с 1857 г. - профессор, в 1860 и 1863 гг. - ректор). Создатель теории химического строения органических соединений, лежащей в основе современной химии. Обосновал идею о взаимном влиянии атомов в молекуле. Предсказал и объяснил изомерию многих органических соединений. Написал «Введение к полному изучению органической химии» (1864 г.) - первое в истории науки руководство, основанное на теории химического строения. Председатель Отделения химии Русского физико-химического общества (1878-1882).

А. М. Бутлеров создал первую в России школу химиков-органиков, из которой вышли блестящие ученые: В. В. Марковников, Д. П. Коновалов, А. Е. Фаворский и др.

Недаром Д. И. Менделеев писал: «А. М. Бутлеров - один из величайших русских ученых, он русский и по ученому образованию, и по оригинальности трудов».

Основные положения теории строения химических соединений

Теория химического строения органических соединений, выдвинутая А. М. Бутлеровым во второй половине прошлого века (1861 г.), была подтверждена работами многих ученых, в том числе учениками Бутлерова и им самим. Оказалось возможным на ее основе объяснить многие явления, до той поры не имевшие толкования: изомерию, гомологию, проявление атомами углерода четырехвалентности в органических веществах. Теория выполнила и свою прогностическую функцию: на ее основе ученые предсказывали существование неизвестных еще соединений, описывали свойства и открывали их.

Так, в 1862-1864 гг. А. М. Бутлеров рассмотрел изомерию пропиловых, бутиловых и амиловых спиртов, определил число возможных изомеров и вывел формулы этих веществ. Существование их позднее было экспериментально доказано, причем некоторые из изомеров синтезировал сам Бутлеров.

В течение XX в. положения теории химического строения химических соединений были развиты на основе новых воззрений, распространившихся в науке: теории строения атома, теории химической связи, представлений о механизмах химических реакций. В настоящее время эта теория имеет универсальный характер, то есть справедлива не только для органических веществ, но и для неорганических.

Первое положение. Атомы в молекулах соединяются в определенном порядке в соответствии с их валентностью. Углерод во всех органических и в большинстве неорганических соединений четырехвалентен.

Очевидно, что последнюю часть первого положения теории легко объяснить тем, что в соединениях атомы углерода находятся в возбужденном состоянии:

а) атомы четырехвалентного углерода могут соединяться друг с другом, образуя различные цепи:

Открытые разветвленные
- открытые неразветвленные
- замкнутые

б) порядок соединения атомов углерода в молекулах может быть различным и зависит от вида ковалентной химической связи между атомами углерода - одинарной или кратной (двойной и тройной).

Второе положение. Свойства веществ зависят не только от их качественного и количественного состава, но и от строения их молекул.

Это положение объясняет явление изомерии. Вещества, имеющие одинаковый состав, но разное химическое или пространственное строение, а следовательно, и разные свойства, называют изомерами. Основные виды изомерии:

Структурная изомерия, при которой вещества различаются порядком связи атомов в молекулах:

1) изомерия углеродного скелета

3) изомерия гомологических рядов (межклассовая)

Пространственная изомерия, при которой молекулы веществ отличаются не порядком связи атомов, а положением их в пространстве: цис-транс-изомерия (геометрическая).

Эта изомерия характерна для веществ, молекулы которых имеют плоское строение: алкенов, циклоалканов и др.

К пространственной изомерии относится и оптическая (зеркальная) изомерия.

Четыре одинарные связи вокруг атома углерода, как вы уже знаете, расположены тетраэдрически. Если атом углерода связан с четырьмя различными атомами или группами, то возможно разное расположение этих групп в пространстве, то есть две пространственные изомерные формы.

Две зеркальные формы аминокислоты аланина (2-аминопропановой кислоты) изображены на рисунке 17.

Представьте себе, что молекулу аланина поместили перед зеркалом. Группа -NH2 находится ближе к зеркалу, поэтому в отражении она будет впереди, а группа -СООН - на заднем плане и т. д. (см. изображение справа). Алании существует в двух пространственных формах, которые при наложении не совмещаются одна с другой.

Универсальность второго положения теории строения химических соединений подтверждает существование неорганических изомеров.

Так, первый из синтезов органических веществ - синтез мочевины, проведенный Велером (1828 г.), показал, что изомерны неорганическое вещество - цианат аммония и органическое - мочевина:

Если заменить атом кислорода в мочевине на атом серы, то получится тиомочевина, которая изомерна роданиду аммония, хорошо известному вам реактиву на ионы Fе 3+ . Очевидно, что тиомочевина не дает этой качественной реакции.

Третье положение. Свойства веществ зависят от взаимного влияния атомов в молекулах.

Например, в уксусной кислоте в реакцию со щелочью вступает только один из четырех атомов водорода. На основании этого можно предположить, что только один атом водорода связан с кислородом:

С другой стороны, из структурной формулы уксусной кислоты можно сделать вывод о наличии в ней одного подвижного атома водорода, то есть о ее одноосновности.

Чтобы убедиться в универсальности положения теории строения о зависимости свойств веществ от взаимного влияния атомов в молекулах, которое существует не только у органических, но и у неорганических соединений, сравним свойства атомов водорода в водородных соединениях неметаллов. Они имеют молекулярное строение и в обычных условиях представляют собой газы или летучие жидкости. В зависимости от положения неметалла в Периодической системе Д. И. Менделеева можно выявить закономерность в изменении свойств таких соединений:

Метан не взаимодействует с водой. Отсутствие основных свойств у метана объясняется насыщенностью валентных возможностей атома углерода.

Аммиак проявляет основные свойства. Его молекула способна присоединять к себе ион водорода за счет его притяжения к неподеленной электронной паре атома азота (донорно-акцепторный механизм образования связи).

У фосфина РН3 основные свойства слабо выражены, что связано с радиусом атома фосфора. Он значительно больше радиуса атома азота, поэтому атом фосфора слабее притягивает к себе атом водорода.

В периодах слева направо увеличиваются заряды ядер атомов, уменьшаются радиусы атомов, увеличивается сила отталкивания атома водорода с частичным положительным зарядом §+, а потому кислотные свойства водородных соединений неметаллов усиливаются.

В главных подгруппах сверху вниз увеличиваются радиусы атомов элементов, атомы неметаллов с 5- слабее притягивают атомы водорода с 5+, уменьшается прочность водородных соединений, они легко диссоциируют, а потому их кислотные свойства усиливаются.

Различная способность водородных соединений неметаллов к отщеплению или присоединению катионов водорода в растворах объясняется неодинаковым влиянием, которое оказывает атом неметалла на атомы водорода.

Различным влиянием атомов в молекулах гидроксидов, образованных элементами одного периода, объясняется также изменение их кислотно-основных свойств.

Основные свойства гндроксидов убывают, а кислотные усиливаются, так как увеличивается степень окисления центрального атома, следовательно, растет энергия связи его с атомом кислорода (8-) и отталкивание им атома водорода (8+).

Гидроксид натрия NаОН. Так как у атома водорода радиус очень мал, его сильнее Притягивает к себе атом кислорода и связь между атомами водорода и кислорода будет более прочной, чем между атомами натрия и кислорода. Гидроксид алюминия Аl(0Н)3 проявляет амфотерные свойства.

В хлорной кислоте НСlO 4 атом хлора с относительно большим положительным зарядом прочнее связан с атомом кислорода и сильнее отталкивает от себя атом водорода с 6+. Диссоциация происходит по кислотному типу.

Основные направления развития теории строения химических соединений и ее значение

Во времена А. М. Бутлерова в органической химии широко использовали эмпирические (молекулярные) и структурные формулы. Последние отражают порядок соединения атомов в молекуле согласно их валентности, которая обозначается черточками.

Для простоты записи часто используют сокращенные структурные формулы, в которых черточками обозначают только связи между атомами углерода или углерода и кислорода.

Сокращенные структурные формулы

Затем, по мере развития знаний о природе химической связи и о влиянии электронного строения молекул органических веществ на их свойства, стали пользоваться электронными формулами, в которых ковалентную связь условно обозначают двумя точками. В таких формулах часто показывают направление смещения электронных пар в молекуле.

Именно электронным строением веществ объясняют мезомерный и индукционный эффекты.

Индукционный эффект - смещение электронных пар гамма-связей от одного атома к другому вследствие их разной электроотрицательности. Обозначается (->).

Индукционный эффект атома (или группы атомов) отрицательный (-/), если этот атом имеет большую электроотрицательность (галогены, кислород, азот), притягивает к себе электроны гамма-связи и приобретает при этом частичный отрицательный заряд. Атом (или группа атомов) имеет положительный индукционный эффект (+/), если он отталкивает электроны гамма-связей. Этим свойством обладают некоторые предельные радикалы С2H5). Вспомните правило Марковникова о том, как присоединяется к алкенам (пропену) водород и галоген галогеноводорода и вы поймете, что это правило носит частный характер. Сравните эти два примера уравнений реакций:

[[Теория_строения_химических_соединений_А._М._Бутлерова|]]

В молекулах отдельных веществ проявляются и индукционный, и мезомерный эффекты одновременно. В этом случае они или усиливают друг друга (в альдегидах, карбоновых кислотах), или взаимно ослабляются (в хлорвиниле).

Результатом взаимного влияния атомов в молекулах является перераспределение электронной плотности.

Идею о пространственном направлении химических связей впервые высказали французский химик Ж. А. Ле Бель и голландский химик Я. X. Вант-Гофф в 1874 г. Предположения ученых полностью подтвердила квантовая химия. На свойства веществ значительное влияние оказывает пространственное строение их молекул. Например, мы уже приводили формулы цис- и транс-изомеров бутена-2, которые отличаются по своим свойствам (см. рис. 16).

Средняя энергия связи, которую необходимо разорвать при переходе одной формы в другую, равна примерно 270 кДж/моль; такого большого количества энергии при комнатной температуре нет. Для взаимного перехода форм бутена-2 из одной в другую необходимо одну ковалентную связь разорвать и взамен образовать другую. Иными словами, этот процесс - пример химической реакции, а обе рассмотренные формы бутена-2 представляют собой различные химические соединения.

Вы, очевидно, помните, что важнейшей проблемой при синтезе каучука было получение каучука стереорегулярного строения. Необходимо было создать такой полимер, в котором структурные звенья располагались бы в строгом порядке (натуральный каучук, например, состоит только из цис-звеньев), ведь от этого зависит такое важнейшее свойство каучука, как его эластичность.

Современная органическая химия различает два основных типа изомерии: структурную (изомерию цепи, изомерию положения кратных связей, изомерию гомологических рядов, изомерию положения функциональных групп) и стереоизоме-рию (геометрическую, или цис-транс-изомерию, оптическую, или зеркальную, изомерию).

Итак, вы смогли убедиться в том, что второе положение теории химического строения, четко сформулированное А. М. Бутлеровым, было неполным. С современных позиций это положение требует дополнения:
свойства веществ зависят не только от их качественного и количественного состава, но и от их:

Химического,

Электронного,

Пространственного строения.

Создание теории строения веществ сыграло важнейшую роль в развитии органической химии. Из науки преимущественно описательной она превращается в науку созидательную, синтезирующую, появилась возможность судить о взаимном влиянии атомов в молекулах различных веществ (см. табл. 10). Теория строения создала предпосылки для объяснения и прогнозирования различных видов изомерии органических молекул, а также направлений и механизмов протекания химических реакций.

На основе этой теории химики-органики создают вещества, которые не только заменяют природные, но по своим свойствам значительно их превосходят. Так, синтетические красители гораздо лучше и дешевле многих природных, например известных в древности ализарина и индиго. В больших количествах производят синтетические каучуки с самыми разнообразными свойствами. Широкое применение находят пластмассы и волокна, изделия из которых используют в технике , быту, медицине, сельском хозяйстве.

Значение теории химического строения А. М. Бутлерова для органической химии можно сравнить со значением Периодического закона и Периодической системы химических элементов Д. И. Менделеева для неорганической химии. Недаром в обеих теориях так много общего в путях их становления, направлениях развития и общенаучном значении. Впрочем, в истории любой другой ведущей научной теории (теории Ч. Дарвина, генетике, квантовой теории и т. д.) можно найти такие общие этапы.

1. Установите параллели между двумя ведущими теориями химии - Периодическим законом и Периодической системой химических элементов Д. И. Менделеева и теорией химического строения органических соединений А. М. Бутлерова по следующим признакам: общее в предпосылках, общее в направлениях их развития, общее в прогностической роли.

2. Какую роль сыграла теория строения химических соединений в становлении Периодического закона?

3. Какие примеры из неорганической химии подтверждают универсальность каждого из положений теории строения химических соединений?

4. Фосфористая кислота Н3РО3 относится к двухосновным кислотам. Предложите ее структурную формулу и рассмотрите взаимное влияние атомов в молекуле этой кислоты.

5. Напишите изомеры, имеющие состав С3Н8O. Назовите их по систематической номенклатуре. Определите виды изомерии.

6. Известны следующие формулы кристаллогидратов хлорида хрома(III): [Сг(Н20)6]Сl3; [Сг(Н20)5Сl]Сl2 Н20; [Сг(Н20)4 * С12]Сl 2Н2О. Как вы назовете описанное явление?

Химическая структура молекулы представляет собой наиболее характерную и уникальную ее сторону, поскольку она определяет ее общие свойства (механические, физические, химические и биохимические). Любое изменение в химической структуре молекулы влечет за собой изменение ее свойств. В случае незначительных структурных изменений, внесенных в одну молекулу, следуют небольшие изменения ее свойств (обычно затрагивает физические свойства), если же молекула испытала глубокие структурные изменения, то и ее свойства (особенно химические) будут глубоко изменены.

Например, Альфа-аминопропионовая кислота (Альфа-аланин) имеет следующую структуру:

Альфа-аланин

Что мы видим:

  1. Наличие определенных атомов (С, Н, О, N),
  2. определенное количество атомов, принадлежащих каждому классу, которые связаны в определенном порядке;

Все эти конструктивные особенности определяют целый ряд свойств Альфа-аланина, таких как: твердое агрегатное состояние, температура кипения 295° С, растворимость в воде, оптическая активность, химические свойства аминокислот и т. д.

При наличии связи аминогруппы с другим атомом углерода (т.е. произошло незначительное структурное изменение), что соответствует бета-аланину:

Бета-аланин

Общие химические свойства по-прежнему остаются характерными для аминокислот, но температура кипения составляет уже 200° C и отсутствует оптическая активность.

Если же, например, два атомы в этой молекуле соединены атомом N в следующем порядке (глубокое структурное изменение):

тогда образованное вещество — 1-нитропропан по своим физическим и химическим свойствам совершенно не похож на аминокислоты: 1-нитро-пропан — это желтая жидкость, с температурой кипения 131°С, нерастворим в воде.

Таким образом, взаимосвязь «структура-свойства» позволяет описывать общие свойства вещества с известной структурой и, наоборот, позволяет найти химическую структуру вещества, зная его общие свойства.

Общие принципы теории строения органических соединений

В сущности определения структуры органического соединения, лежат следующие принципы, которые вытекают из связи между их структурой и свойствами:

а) органические вещества, в аналитически чистом состоянии, имеют один и тот же состав, независимо от способа их получения;

б) органические вещества, в аналитически чистом состоянии, обладает постоянными физико-химическими свойствами;

в) органические вещества с постоянным составом и свойствами, имеет только одну уникальную структуру.

В 1861 г. великий русский ученый А. М. Бутлеров в своей статье «О химическом строении вещества» раскрыл основную идею теории химического строения, заключающуюся во влиянии способа связи атомов в органическом веществе на его свойства. Он обобщил все имеющиеся к тому времени знания и представления о строении химических соединений в теории строения органических соединений.

Основные положения теории А. М. Бутлерова

кратко могут быть изложены следующим образом:

  1. В молекуле органического соединения атомы связаны в определенной последовательности, что и определяет его строение.
  2. Атом углерода в составе органических соединений имеет валентность равную четырем.
  3. При одинаковом составе молекулы возможно несколько вариантов соединения атомов этой молекулы между собой. Такие соединения, имеющие один состав, но различное строение были названы изомерами, а подобное явление – изомерией.
  4. Зная строение органического соединения можно предсказать его свойства; зная свойства органического соединения можно предсказать его строение.
  5. Атомы, образующие молекулу подвержены взаимному влиянию, что определяет их реакционную способность. Непосредственно связанные атомы оказывают большее влияние друг на друга, влияние не связанных непосредственно атомов значительно слабее.

Ученик А.М. Бутлерова — В. В. Марковников продолжил изучение вопроса взаимного влияния атомов, что нашло свое отражение в 1869 году в его диссертационной работе «Материалы по вопросу о взаимном влиянии атомов в химических соединениях».

Заслуга А.М. Бутлерова и значение теории химического строения исключительно велико ля химического синтеза. Открылась возможность предсказать основные свойства органических соединений, предвидеть пути их синтеза. Благодаря теории химического строения химики впервые оценили молекулу как упорядоченную систему со строгим порядком связи между атомами. И в настоящее время основные положения теории Бутлерова, несмотря на изменения и уточнения, лежат в основе современных теоретических представлений органической химии.

Категории ,

Основные положения теории химического строения А.М. Бутлерова

1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

3. Свойства веществ зависят от их химического строения.

4. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.

5. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.

Развитию теории строения способствовали работы Кекуле, Кольбе, Купера и Вант-Гоффа. Однако их теоретические положения не носили общего характера и служили, главным образом, целям объяснения экспериментального материала.

2. Формулы строения

Формула строения (структурная формула) описывает порядок соединения атомов в молекуле, т.е. ее химическое строение. Химические связи в структурной формуле изображают черточками. Связь между водородом и другими атомами обычно не указывается (такие формулы называются сокращенными структурными формулами).

Например, полная (развернутая) и сокращенная структурные формулы н-бутана C4H10имеют вид:

Другой пример - формулы изобутана.

Часто используется еще более краткая запись формулы, когда не изображают не только связи с атомом водорода, но и символы атомов углерода и водорода. Например, строение бензола C6H6 отражают формулы:

Структурные формулы отличаются от молекулярных (брутто) формул, которые показывают только, какие элементы и в каком соотношении входят в состав вещества (т.е. качественный и количественный элементный состав), но не отражают порядка связывания атомов.

Например, н-бутан и изобутан имеют одну молекулярную формулу C4H10, но разную последовательность связей.

Таким образом, различие веществ обусловлено не только разным качественным и количественным элементным составом, но и разным химическим строением, которое можно отразить лишь структурными формулами.

3. Понятие о изомерии

Еще до создания теории строения были известны вещества одинакового элементного состава, но c разными свойствами. Такие вещества были названы изомерами, а само это явление - изомерией.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов. Таким образом,

изомерия - это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Например, при содержании в молекуле 4-х атомов углерода и 10-ти атомов водорода возможно существование 2-х изомерных соединений:

В зависимости от характера отличий в строении изомеров различают структурную и пространственную изомерию.

4. Структурные изомеры

Структурные изомеры - соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Например, составу C5H12 соответствует 3 структурных изомера:

Другой пример:

5. Стереоизомеры

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.

Пространственными изомерами являются оптические и цис-транс изомеры (шарики разного цвета обозначают разные атомы или атомные группы):

Молекулы таких изомеров несовместимы в пространстве.

Стереоизомерия играет важную роль в органической химии. Подробнее эти вопросы будут рассматриваться при изучении соединений отдельных классов.

6. Электронные представления в органической химии

Применение электронной теории строения атома и химической связи в органической химии явилось одним из важнейших этапов развития теории строения органических соединений. Понятие о химическом строении как последовательности связей между атомами (А.М. Бутлеров) электронная теория дополнила представлениями обэлектронном и пространственном строении и их влиянии на свойства органических соединений. Именно эти представления дают возможность понять способы передачи взаимного влияния атомов в молекулах (электронные и пространственные эффекты) и поведение молекул в химических реакциях.

Согласно современным представлениям свойства органических соединений определяются:

природой и электронным строением атомов;

типом атомных орбиталей и характером их взаимодействия;

типом химических связей;

химическим, электронным и пространственным строением молекул.

7. Свойства электрона

Электрон имеет двойственную природу. В разных экспериментах он может проявлять свойства как частицы, так и волны. Движение электрона подчиняется законам квантовой механики. Связь между волновыми и корпускулярными свойствами электрона отражает соотношение де Бройля.

Энергию и координаты электрона, как и других элементарных частиц, невозможно одновременно измерить с одинаковой точностью (принцип неопределенностиГейзенберга). Поэтому движение электрона в атоме или в молекуле нельзя описать с помощью траектории. Электрон может находиться в любой точке пространства, но с разной вероятностью.

Часть пространства, в котором велика вероятность нахождения электрона, называют орбиталью или электронным облаком.

Например:

8. Атомные орбитали

Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.

Положение элемента в Периодической системе определяет тип орбиталей его атомов (s-, p-, d-, f-АО и т.д.), различающихся энергией, формой, размерами и пространственной направленностью.

Для элементов 1-го периода (Н, He) характерна одна АО - 1s.

В элементах 2-го периода электроны занимают пять АО на двух энергетических уровнях: первый уровень 1s; второй уровень - 2s, 2px, 2py, 2pz. (цифры обозначают номер энергетического уровня, буквы - форму орбитали).

Состояние электрона в атоме полностью описывают квантовые числа.

Слайд 1>

Задачи лекции:

  • Образовательные:
    • формировать понятия о сущности теории химического строения органических веществ, опираясь на знания учащихся об электронном строении атомов элементов, их положении в Периодической системе Д.И. Менделеева, о степени окисления, природе химической связи и о других главнейших теоретических положениях:
      • последовательность расположения атомов углерода в цепи,
      • взаимное влияние атомов в молекуле,
      • зависимость свойств органических веществ от структуры молекул;
    • сформировать представление о ходе развития теорий в органической химии;
    • усвоить понятия: изомеры и изомерия;
    • разъяснить смысл структурных формул орг.веществ и их преимуществ перед молекулярными;
    • показать необходимость и предпосылки создания теории химического строения;
    • продолжить формирование навыков составления конспекта.
  • Развивающие :
    • развивать мыслительные приемы анализа, сравнения, обобщения;
    • развивать абстрактное мышление;
    • тренировать внимание учащихся при восприятии большого по объему материала;
    • выробатывать умения анализировать информацию и выделять наиболее важный материал.
  • Воспитательные:
    • с целью патриотического и интернационального воспитания привести учащимся исторические сведения о жизни и деятельности ученых.

ХОД УРОКА

1. Организацонная часть

– Приветствие
– Подготовка учащихся к уроку
– Получение сведений об отсутствующих.

2. Изучение нового

План лекции: <Приложение 1 . Слайд 2>

I. Доструктурные теории:
– витализм;
– теория радикалов;
– теория типов.
II. Краткая справка о состоянии химической науки к 60-м годам XIX столетия. Условия создания теории химического строения веществ:
– необходимость создания теории;
– предпосылки теории химического строения.
III. Сущность теории химического строения органических веществ А.М. Бутлерова. Понятие об изомерии и изомерах.
IV. Значение теории химического строения органических веществ А.М. Бутлерова и ее развитие.

3. Задание на дом: конспект, п. 2.

4. Лекция

I. Знания об органических веществах накапливались постепенно еще с глубокой древности, но как самостоятельная наука органическая химия возникла лишь в начале XIX века. Оформление самостоятельности орг.химии связано с именем шведского ученого Я. Берцелиуса <Приложение 1 . Слайд 3>. В 1808-1812 г.г. он издал свое большое руководство по химии, в котором первоначально намеревался рассмотреть наряду с минеральными также и вещества животного и растительного происхождения. Но часть учебника, посвященная орг.веществам, появилась лишь в 1827 г.
Самое существенное различие между веществами неорганическими и органическими Я. Берцелиус видел в том, что первые могут быть получены в лабораториях синтетическим путем, в то время как вторые якобы образуются лишь в живых организмах под действием некой «жизненной силы» – химического синонима «души», «духа», «божественного происхождения» живых организмов и составляющих их органических веществ.
Теория, объяснявшая образование орг.соединений вмешательством «жизненной силы», получила название витализма. В течение некоторого времени она пользовалась популярностью. В лаборатории удавалось синтезировать лишь самые простые углеродсодержащие вещества, такие как углекислый газ – СО 2 , карбид кальция – CaC 2 , цианид калия – KCN.
Только в 1828 г. немецкий ученый Вёлер <Приложение 1 . Слайд 4> сумел получить органическое вещество мочевину из неорганической соли – цианата аммония – NH 4 CNO.
NH 4 CNO –– t –> CO(NH 2) 2
В 1854 г. французский ученый Бертло <Приложение 1 . Слайд 5>получил триглицерид. Это и повлекло за собой необходимость изменения определения органической химии.
Ученые пытались на основании состава и свойств разгадать природу молекул органических веществ, стремились создать систему, которая позволила бы связать воедино разрозненные факты, накопившиеся к началу XIX века.
Первая попытка создания теории, стремившейся обобщить имевшиеся об орг.веществах данные, связана с именем французского химика Ж.Дюма <Приложение 1 . Слайд 6>. Это была попытка рассмотреть с единой точки зрения довольно большую группу орг.соединений, которые сегодня мы называли бы производными этилена. Орг.соединения оказывались производными некоторого радикала C 2 H 4 – этерина:
C 2 H 4 * HCl – хлористый этил (солянокислый этерин)
Заложенная в этой теории идея – подход к орг.веществу как состоящему из 2-х частей – легла в последствии в основу, более широкой теории радикалов (Я. Берцелиус, Ю.Либих, Ф. Велер). Эта теория основана на представлении о «дуалистическом строении» веществ. Я. Берцелиус писал: «каждое орг.вещество состоит из 2-х составных частей, несущих противоположный электрический заряд». Одной из этих составных частей, а именно частью электроотрицательной, Я.Берцелиус считал кислород, остальная же часть, собственно органическая, должна была составлять электроположительный радикал.

Основные положения теории радикалов: <Приложение 1 . Слайд 7>

– в состав органических веществ входят радикалы, несущие на себе положительный заряд;
– радикалы всегда постоянны, не подвергаются изменениям, они без изменений переходят из одной молекулы в другую;
– радикалы могут существовать в свободном виде.

Постепенно в науке накапливались факты, противоречащие теории радикалов. Так Ж.Дюма провел замещение водорода хлором в углеводородных радикалах. Ученым, приверженцам теории радикалов, казалось невероятным, чтобы хлор, заряженный отрицательно, играл в соединениях роль водорода, заряженного положительно. В 1834 г. Ж. Дюма получил задание расследовать неприятное происшествие во время бала во дворце французского короля: свечи при горении выделяли удушливый дым. Ж.Дюма установил, что воск, из которого делались свечи, фабрикант для отбелки обрабатывал хлором. При этом хлор входил в молекулу воска, заменяя часть содержавшегося в ней водорода. Удушливые пары, перепугавшие королевских гостей, оказались хлороводородом (HCl). В дальнейшем Ж.Дюма получил трихлоруксусную кислоту из уксусной.
Таким образом, электроположительный водород заменялся крайне электроотрицательным элементом хлором, а свойства соединения при этом почти не менялись. Тогда Ж.Дюма сделал вывод, что на место дуалистического подхода должен стать подход к орг.соединению как единому целому.

Теория радикалов была постепенно отвергнута, однако она оставила глубокий след в органической химии: <Приложение 1 . Слайд 8>
– понятие «радикал» прочно вошло в химию;
– верным оказалось утверждение о возможности существования радикалов в свободном виде, о переходе в огромном числе реакций определенных групп атомов из одного соединения в другое.

В 40-х г.г. XIXв. Было положено начало учению о гомологии, позволившему выяснить некоторые отношения между составом и свойствами соединений. Выявлены гомологические ряды, гомологическая разность, что позволило классифицировать органические вещества. Классификация орг.веществ на основе гомологии привела к возникновению теории типов (40-50-е годы XIX в., Ш. Жерар, А.Кекуле и др.) <Приложение 1 . Слайд 9>

Сущность теории типов <Приложение 1 . Слайд 10>

– в основу теории положена аналогия в реакциях между органическими и некоторыми неорганическими веществами, принятыми в качестве типов (типы: водород, вода, аммиак, хлороводород и др.). Замещая в типе вещества атомы водорода на другие группы атомов, ученые предсказали различные производные. Например, замещение атома водорода в молекуле воды на радикал метил приводит к возникновению молекулы спирта. Замещение двух атомов водорода – к появлению молекулы простого эфира <Приложение 1 . Слайд 11>

Ш. Жерар прямо говорил в связи с этим, что формула вещества – это только сокращенная запись его реакций.

Все орг. вещества считали производными простейших неорганических веществ – водорода, хлороводорода, воды, аммиака <Приложение 1 . Слайд 12>

<Приложение 1 . Слайд 13>

– молекулы органических веществ представляют собой систему, состоящую из атомов, порядок соединения которых неизвестен; на свойства соединений влияет совокупность всех атомов молекулы;
– невозможно познать строение вещества, так как молекулы в процессе реакции изменяются. Формула вещества отражает не строение, а реакции, в которые данное вещество. Для каждого вещества можно написать столько рациональных формул, сколько различных видов превращений может испытывать вещество. Теория типов допускала множественность «рациональных формул» для веществ в зависимости от того какие реакции хотят этими формулами выразить.

Теория типов сыграла большую роль в развитии органической химии <Приложение 1 . Слайд 14>

– позволила предсказать и открыть ряд веществ;
– оказала положительное влияние на развитие учения о валентности;
– обратила внимание на изучение химических превращений органических соединений, что позволило глубже изучить свойства веществ, а также свойства предсказываемых соединений;
– создала совершенную для того времени систематизацию органических соединений.

Не следует забывать, что в действительности теории возникали и сменяли друг друга не последовательно, а существовали одновременно. Химики нередко плохо понимали друг друга. Ф.Вёлер в 1835 г. говорил, что «органическая химия в настоящее время может кого угодно свести с ума. Она представляется мне дремучим лесом полным чудесных вещей, огромной чащей без выхода, без конца, куда не осмеливаешься проникнуть…».

Ни одна из этих теорий не стала теорией органической химии в полном смысле слова. Главная причина несостоятельности этих представлений в их идеалистической сущности: внутреннее строение молекул считалось принципиально непознаваемым, а любые рассуждения о нем – шарлатанством.

Нужна была новая теория, которая бы стояла на материалистических позициях. Такой теорией явилась теория химического строения А.М. Бутлерова <Приложение 1 . Слайды 15, 16>, которая создана в 1861 г. Все рациональное и ценное, что было в теориях радикалов и типов, было в дальнейшем ассимилировано теорией химического строения.

Необходимость появления теории диктовалась: <Приложение 1 . Слайд 17>

– возросшими требованиями промышленности к органической химии. Необходимо было обеспечить текстильную промышленность красителями. В целях развития пищевой промышленности требовалось усовершенствовать методы переработки сельскохозяйственных продуктов.
В связи с этими задачами начали разрабатываться новые методы синтеза органических веществ. Однако у ученых возникли серьезные затруднения по научному обоснованию этих синтезов. Так, например, нельзя было объяснить валентность углерода в соединениях с помощью старой теории.
Углерод нам известен как элемент 4-х валентный (Это было доказано экспериментально). Но здесь он как будто только в метане CH 4 сохраняет эту валентность. В этане C 2 H 6 если следовать нашим представлениям, углерод д.б. 3-валентным, а в пропане C 3 H 8 – дробную валентность. (А мы знаем, что валентность должна быть выражена только целыми числами).
Какова же валентность углерода в органических соединениях?

Было непонятно, почему существуют вещества с одинаковым составом, но различными свойствами: С 6 H 12 O 6 – молекулярная формула глюкозы, но такая же формула и фруктозы (сахаристого вещества – составной части мёда).

Доструктурные теории не могли объяснить многообразие органических веществ. (Почему углерод и водород – два элемента, – могут образовывать такое большое число различных соединений?).

Необходимо было систематизировать имеющиеся знания с единой точки зрения и разработать единую химическую символику.

Научно обоснованный ответ на эти вопросы дала теория химического строения органических соединений, созданная русским ученым А.М. Бутлеровым.

Основными предпосылками , подготовившими почву для возникновения теории химического строения были <Приложение 1 . Слайд 18>

– учение о валентности. В 1853 г. Э. Франкланд ввел понятие о валентности, установил валентность для ряда металлов, исследуя металлоорганические соединения. Постепенно понятие валентности было распространено на многие элементы.

Важным открытием для органической химии явилась гипотеза о способности атомов углерода к образованию цепей (А. Кекуле, А. Купер).

Одной из предпосылок была выработка правильного представления об атомах и молекулах. До 2-й половины 50-х г.г. XIXв. Не было общепризнанных критериев для определения понятий: «атом», «молекула», «атомная масса», «молекулярная масса». Только на международном конгрессе химиков в Карлсруэ (1860 г.) были четко определены эти понятия, что предопределило развитие теории валентности, возникновение теории химического строения.

Основные положения теории химического строения А.М. Бутлерова (1861 г.)

А.М. Бутлеров сформулировал важнейшие идеи теории строения органических соединений в виде основных положений, которые можно разделить на 4 группы.<Приложение 1 . Слайд 19>

1. Все атомы, образующие молекулы органических веществ, связаны в определенной последовательности согласно их валентности (т.е. молекула имеет строение).

<Приложение 1 . Слайды 19, 20>

В соответствии с этими представлениями валентность элементов условно изображают черточками, например, в метане CH 4 . <Приложение 1 . Слайд 20>>

Такое схематичное изображение строения молекул называют формулами строения и структурными формулами. Основываясь на положениях о 4-х валентности углерода и способности его атомов образовывать цепи и циклы, структурные формулы орг.веществ можно изобразить так: <Приложение 1 . Слайд 20>

В этих соединениях углерод четырехвалентен. (Черточка символизирует ковалентную связь, пару электронов).

2. Свойства вещества зависят не только от того какие атомы и сколько их входит в состав молекул, но и от порядка соединения атомов в молекулах.(т.е. свойства зависят от строения) <Приложение 1 . Слайд 19>

Данное положение теории строения орг.веществ объяснило, в частности, явление изомерии. Существуют соединения, которые содержат одинаковое число атомов одних и тех же элементов, но связанных в различном порядке. Такие соединения обладают разными свойствами и называются изомерами.
Явление существования веществ с одинаковым составом, но разным строением и свойствами называется изомерией. <Приложение 1 . Слайд 21>

Существование изомеров орг.веществ объясняет их многообразие. Явление изомерии было предсказано и доказано (экспериментально) А.М.Бутлеровым на примере бутана

Так, например, составу С 4 Н 10 отвечают две структурные формулы: <Приложение 1 . Слайд 22>

Разное взаимное расположение атомов углерода в молекулах у/в появляется только с бутана. Число изомеров возрастает с увеличением числа атомов углерода у соответствующего углеводорода, например, у пентана – три изомера, а у декана – семьдесят пять.

3. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы предвидеть свойства. <Приложение 1 . Слайд 19>

Из курса неорганической химии, известно, что свойства неорганических веществ зависят от строения кристаллических решеток. Отличительные свойства атомов от ионов объясняются их строением. В дальнейшем мы убедимся, что органические вещества с одинаковыми молекулярными формулами, но разным строением отличаются не только по физическим, но и по химическим свойствам.

4. Атомы и группы атомов в молекулах веществ взаимно влияют друг на друга.

<Приложение 1 . Слайд 19>

Как нам уже известно, свойства неорганических соединений, содержащих гидроксогруппы, зависят от того, с какими атомами они связаны – с атомами металлов или неметаллов. Так например, гидроксогруппу содержат как основания, так и кислоты:<Приложение 1 . Слайд 23>

Однако, свойства этих веществ совершенно различны. Причина различного химического характера группы – ОН (в водном растворе) обусловлена влиянием связанных с ней атомов и групп атомов. С возрастанием неметаллических свойств центрального атома ослабляется диссоциация по типу основания и возрастает диссоциация по типу кислоты.

Органические соединения также могут иметь разные свойства, которые зависят от того, с какими атомами или группами атомов связаны гидроксильные группы.

Вопрос о взаимном вливании атомов А.М. Бутлеров подробно разобрал 17 апреля 1879 г. на заседании Русского физико – химического общества. Он говорил, что если с углеродом связаны два разных элемента, например, Cl и H, то «они здесь не зависят один от другого в той степени, как от углерода: между ними нет той зависимости, той связи, какая существует в частице соляной кислоты… Но следует ли из этого, что в соединении CH 2 Cl 2 между водородом и хлором нет никакой зависимости? Я отвечаю на это решительным отрицанием».

В качестве конкретного примера он приводит далее увеличение подвижности хлора при превращении группы CH 2 Cl в COCl и говорит по этому поводу: «Очевидно, что характер находящегося в частице хлора изменился под влиянием кислорода, хотя этот последний и не соединился с хлором непосредственно». <Приложение 1 . Слайд 23>

Вопрос о взаимном влиянии непосредственно не связанных атомов явился основным теоретическим стержнем работ В.В. Морковникова.

В истории человечества известно сравнительно немного ученых, открытия которых имеют всемирное значение. В области органической химии такие заслуги принадлежат А.М. Бутлерову. По значимости теорию А.М. Бутлерова сопоставляют с Периодическим законом.

Теория химического строения А.М. Бутлерова: <Приложение 1 . Слайд 24>

– дала возможность систематизировать органические вещества;
– ответила на все вопросы, возникшие к тому времени в органической химии (см. выше);
– позволила теоретически предвидеть существование неизвестных веществ, найти пути их синтеза.

Прошло почти 140 лет с тех пор, как была создана ТХС органических соединений А.М. Бутлерова но и теперь химики всех стран используют ее в своих работах. Новейшие достижения науки пополняют данную теорию, уточняют и находят все новые подтверждения правильности ее основных идей.

Теория химического строения и сегодня остается фундаментом органической химии.

ТХС органических соединений А.М. Бутлерова внесла существенный вклад в создание общенаучной картины мира, способствовала диалектико – материалистическому пониманию природы:<Приложение 1 . Слайд 25>

закон перехода количественных изменений в качественные можно проследить на примере алканов: <Приложение 1 . Слайд 25>.

Изменяется только количество атомов углерода.

закон единства и борьбы противоположностей прослеживается на явлении изомерии<Приложение 1 . Слайд 26>

Единство – в составе (одинаковый), расположении в пространстве.
Противоположность – в строении и свойствах (разная последовательность расположения атомов).
Эти два вещества сосуществуют вместе.

закон отрицания отрицания – на изомерии.<Приложение 1 . Слайд 27>

Изомеры сосуществуя отрицают друг друга своим существованием.

Разработав теорию, А.М. Бутлеров не считал ее абсолютной и неизменной. Он утверждал, что она должна развиваться. ТХС органических соединений не осталась неизменной. Дальнейшее ее развитие шло, главным образом, в 2-х взаимосвязанных направлениях: <Приложение 1 . Слайд 28>

Стереохимия – учение о пространственном строении молекул.

Учение об электронном строении атомов (позволило понять природу химической связи атомов, сущность взаимного влияния атомов, объяснить причину проявления веществом тех или иных химических свойств).

Loading...Loading...