Реактивное движение. Доклад: Реактивное движение в природе и технике

Закон сохранения импульса имеет большое значение для исследования реактивного движения.

Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно него. (Например, при истечении продуктов сгорания из сопла реактивного летального аппарата). При этом появляется так называемая реактивная сила , толкающая тело.

Наблюдать реактивное движение можно очень просто. Надуйте детский резиновый шарик и отпустите его. Шарик стремительно полетит (рис. 5.4). Движение, правда, будет кратковременным. Реактивная сила действует лишь до тех пор, пока продолжается истечение воздуха. Главная особенность реактивной силы в том, что она возникает в результате взаимодействия частей системы без какого-либо взаимодействия с внешними телами. В нашем примере шарик летит за счет взаимодействия с вытекающей из него струей воздуха. Сила же, сообщающая ускорение пешеходу на земле, пароходу на воде или винтовому самолету в воздухе, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.

Рассмотрим примеры решения задач на применение закона сохраенния импульса и реактивное движение.

1. Вагон массы 10т с автоматической сцепкой, движущийся со скоростью 12м/с, догоняет такой же вагон массы 20т, движущийся со скоростью 6м/с, и сцепляется с ним. Двигаясь дальше вместе, оба вагона сталкиваются со стоящим на рельсах третьим вагоном массы 7,5т. Найти скорости движения вагонов на разных участках пути. Трением пренебречь.

Дано: m 1 = 10 кг m 2 = 20 кг m 3 = 7,5 кг 1 =12м/с 2 = 6м/с Решение: На основании закона сохранения импульса имеем , Где - общая скорость движения двух вагонов, -трех вагонов. Решая уравнение , находим Из уравнения находим Подставляем числовые значения = (10·10 3 ·12+ 20 ·6) / (10 +20 ) = 8 (м/с) = 6,4 м/с Ответ: = 8 м/с; = 6,4 м/с
-? -?

2. Пуля вылетает из винтовки со скоростью п = 900м/с. Найти скорость винтовки при отдаче, если ее масса m в в 500 раз больше массы пули m п.

Дано: п = 900м/с m в = 500 m п Решение: Импульс винтовки с пулей до выстрела равнялся нулю. Поскольку можно считать, что система винтовки- пуля при выстреле изолирована (действующие на систему внешние силы не равны нулю, но уравнивают друг друга), ее импульс останется неизменным. Спроектировав все импульсы на ось, параллельную скорости пули и совпадающую с ней по направлению, мы можем записать ; отсюда . в = - Знак « - »указывает, что направление скорости винтовки противоположно направлению скорости пули. Ответ: в =
в -?

3. Граната, летевшая со скоростью =15м/с, разорвалась на две части с массами m 1 = 6кг и m 2 = 14кг. Скорость большего осколка 2 =24м/с направлена так же, как и скорость гранаты до взрыва. Найти направление и модуль скорости меньшего осколка.

Так как направления скоростей и 2 совпадают, то скорость 1 будет иметь либо то же

направление, либо противоположное ему. Совместим с этим направлением ось координат, при-

нимая направление векторов и 2 за положительное направление оси. Спроектируем урав-

нение на выбранную ось координат. Получим скалярное уравнение

Подставим числовые значения и вычислим:

Знак « - » указывает, что скорость 1 направлена в сторону, противоположную направлению полета гранаты.

Ответ:

4. Два шара массы, которых m 1 =0,5 кг и m 2 =0,2 кг, движутся по гладкой горизонтальной поверхности навстречу друг другу со скоростями и . Определите их скорость после центрального абсолютно неупругого удара.

Дано: m 1 =0,5 кг m 2 =0,2 кг Решение Ось ОХ направим вдоль линии, проходящей через центры движущихся шаров по направлению скорости . После абсолютно неупругого удара шары движутся с одной и той же скоростью . Так как вдоль оси ОХ внешние силы не действуют (трения нет), то сумма проекции импульсов на эту ось сохраняется (сумма проекций импульсов обоих шаров до удара равна проекции общего импульса системы после удара).
- ?

Так как , а , то .

После удара шары будут двигаться в отрицательном направлении оси ОХ со скоростью 0,4 м/с.

Ответ: = 0,4 м/с

5. Два пластилиновых шарика, отношение масс которых m 2 /m 1 =4, после соударения слиплись и стали двигаться по гладкой горизонтальной поверхности со скоростью (см.рис.). Определите скорость легкого шарика до соударения, если он двигался в 3 раза быстрее тяжелого (), а направления движения шариков были взаимно перпендикулярны. Трением пренебречь.

Запишем это уравнение в проекциях на оси ОХ и ОY , проведенные так, как пока

зано на рисунке: ,

.

Так как , то .

Модуль скорости равен: .

Итак, ,следовательно, .

Задания для самостоятельного решения

1. Два шара массы, которых m 1 и m 2 , движутся по гладкой горизонтальной поверхности навстречу друг другу со скоростями и . Определите их скорость после центрального абсолютно неупругого удара.

№ вар
m 1
m 2

2. Вагон массы m 1 с автоматической сцепкой, движущийся со скоростью , догоняет такой же вагон массы m 2 , движущийся со скоростью , и сцепляется с ним. Двигаясь дальше вместе, оба вагона сталкиваются со стоящим на рельсах третьим вагоном массы m 3 . Найти скорости движения вагонов на разных участках пути. Трением пренебречь.

№ вар
m 1
m 2
m 3

3. решить задачи

Варианты 1,6,11,16,21,26 задачу № 4

Варианты 2,7,12,17,22,27 задачу № 5

Варианты 3,8,13,18,23,28 задачу № 6

Варианты 4,9,14,19,24,29 задачу № 7

Варианты 5,10,15,20,25,30 задачу № 8

4. Стоящий на льду человек массой m 1 =60 кг ловит мяч массой m 2 =0,50 кг, который летит горизонтально со скоростью =20м/с. На какое расстояние откатится человек с мячом по горизонтальной поверхности льда, если коэффициент трения k =0,050?

5. Из винтовки массой 4,0 кг вылетает пуля массой 10 г со скоростью 700 м/с. Какова скорость отдачи винтовки при выстреле, если она подвешена горизонтально на нитях? На какую высоту поднимается винтовка после выстрела?

6. Снаряд массой 4,0 кг вылетает из ствола орудия в горизонтальном направлении со скоростью 1000 м/с. Определить среднюю силу сопротивления противооткатных устройств, если длина отката ствола по направляющим неподвижного орудия 1,0 м, а масса ствола 320кг.

7. Ракета, масса которой без топлива m 1 =400 г, при сгорании топлива поднимается на высоту h =125м. Масса топлива m 2 =50г. определить скорость выхода газов из ракеты , считая, что сгорание топлива происходит мгновенно.

8. Плот массой m 1 =400кг и длиной l =10м покоится в неподвижной воде. Два мальчика с массами m 2 =60 кг и m 3 = 40кг, стоящие на противоположных концах плота, одновременно начинают двигаться навстречу друг другу с одинаковой скоростью и останавливаются при встрече. На какое расстояние при этом сместится плот?

Реактивное движение. Формула Циолковского.

На принципе отдачи основано реактивное движение. В ракете при сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла с большой скоростью U относительно ракеты. Обозначим массу выброшенных газов через m, а массу ракеты после истечения газов через M. Тогда для замкнутой системы «ракета + газы» можно записать на основании закона сохранения импульса (по аналогии с задачей о выстреле из орудия): , V= - где V – скорость ракеты после истечения газов.

Здесь предполагалось, что начальная скорость ракеты равнялась нулю.

Полученная формула для скорости ракеты справедлива лишь при условии, что вся масса сгоревшего топлива выбрасывается из ракеты одновременно. На самом деле истечение происходит постепенно в течение всего времени ускоренного движения ракеты. Каждая последующая порция газа выбрасывается из ракеты, которая уже приобрела некоторую скорость.

Для получения точной формулы процесс истечения газа из сопла ракеты нужно рассмотреть более детально. Пусть ракета в момент времени t имеет массу M и движется со скоростью V. В течение малого промежутка времени Δt из ракеты будет выброшена некоторая порция газа с относительной скоростью U. Ракета в момент t + Δt будет иметь скорость а ее масса станет равной M + ΔM, где ΔM < 0 (рис. 1.17.3 (2)). Масса выброшенных газов будет, очевидно, равна –ΔM > 0. Скорость газов в инерциальной системе OX будет равна V+U. Применим закон сохранения импульса. В момент времени t + Δt импульс ракеты равен ()(M + ΔM)а импульс испущенных газов равен

Ma = μu,

где u – модуль относительной скорости. С помощью математической операции интегрирования из этого соотношения можно получить формулу для конечной скорости υ ракеты:

где – отношение началь ной и конечной масс ракеты. Эта формула называется формулой Циолковского. Из нее следует, что конечная скорость ракеты может превышать относительную скорость истечения газов. Следовательно, ракета может быть разогнана до больших скоростей, необходимых для космических полетов. Но это может быть достигнуто только путем расхода значительной массы топлива, составляющей большую долю первоначальной массы ракеты. Например, для достижения первой космической скорости υ = υ 1 = 7,9·10 3 м/с при u = 3·10 3 м/с (скорости истечения газов при сгорании топлива бывают порядка 2–4 км/с) стартовая масса одноступенчатой ракеты должна примерно в 14 раз превышать конечную массу. Для достижения конечной скорости υ = 4u отношение должно быть = 50.

Значительное снижение стартовой массы ракеты может быть достигнуто при использовании многоступенчатых ракет, когда ступени ракеты отделяются по мере выгорания топлива. Из процесса последующего разгона ракеты исключаются массы контейнеров, в которых находилось топливо, отработавшие двигатели, системы управления и т. д. Именно по пути создания экономичных многоступенчатых ракет развивается современное ракетостроение.

В небо взмывают многотонные космические корабли, а в морских водах ловко лавируют прозрачные, студенистые медузы, каракатицы и осьминоги - что между ними общего? Оказывается, в обоих случаях для перемещения используется принцип реактивного движения. Именно этой теме и посвящена наша сегодняшняя статья.

Заглянем в историю

Самые первые достоверные сведения о ракетах относятся к XIII веку. Они применялись индусами, китайцами, арабами и европейцами в боевых действиях как боевое и сигнальное оружие. Затем последовали целые столетия почти полного забвения этих устройств.

В России идея использования реактивного двигателя возродилась благодаря работам революционера-народовольца Николая Кибальчича. Сидя в царских застенках, он разработал российский проект реактивного двигателя и летательный аппарат для людей. Кибальчич был казнен, а его проект долгие годы пылился в архивах царской охранки.

Основные идеи, чертежи и расчеты этого талантливого и мужественного человека получили дальнейшее развитие в трудах К. Э. Циолковского, который предложил использовать их для межпланетных сообщений. С 1903 по1914 год он публикует ряд работ, где убедительно доказывает возможность использования реактивного движения для исследования космического пространства и обосновывает целесообразность использования многоступенчатых ракет.

Многие научные разработки Циолковского и по сей день применяются в ракетостроении.

Биологические ракеты

Как, вообще возникла идея перемещаться, отталкиваясь от собственной реактивной струи? Возможно, пристально наблюдая за морскими обитателями, жители прибрежных зон заметили, как это происходит в животном мире.

Например, морской гребешок перемещается за счет реактивной силы водной струи, выбрасываемой из раковины при быстром сжатии её створок. Но ему никогда не угнаться за самыми быстрыми пловцами - кальмарами.

Их ракетообразные тела мчатся хвостом вперед, выбрасывая из специальной воронки, запасенную воду. перемещаются по тому же принципу, выдавливая воду сокращением своего прозрачного купола.

Природа одарила «реактивным двигателем» и растение под названием «бешеный огурец». Когда его плоды полностью созревают, в ответ на самое слабое прикосновение, он выстреливает клейковину с семенами. Сам плод при этом отбрасывается в противоположную сторону на расстояние до 12 м!

Ни морским обитателям, ни растениям неведомы физические законы, лежащие в основе этого способа передвижения. Мы же попробуем в этом разобраться.

Физические основы принципа реактивного движения

Вначале обратимся к простейшему опыту. Надуем резиновый шарик и, не завязывая, отпустим в свободный полёт. Стремительное движение шарика будет продолжаться до тех пор, пока истекающая из него струя воздуха будет достаточно сильной.

Для объяснения результатов этого опыта нам следует обратиться к III закону , который утверждает, что два тела взаимодействуют с силами равными по величине и противоположными по направлению. Следовательно, сила, с которой шарик воздействует на вырывающиеся из него струи воздуха, равна силе, с которой воздух отталкивает от себя шарик.

Перенесем эти рассуждения на ракету. Эти устройства на огромной скорости выбрасывают некоторую часть своей массы, вследствие чего сами получают ускорение в противоположном направлении.

С точки зрения физики этот процесс чётко объясняется законом сохранения импульса. Импульс - это произведение массы тела на его скорость (mv) Пока ракета в покое, её скорость и импульс равны нулю. Если из неё выбрасывается реактивная струя, то оставшаяся часть по закону сохранения импульса должна приобрести такую скорость, чтобы суммарный импульс по-прежнему был равным нулю.

Обратимся к формулам:

m г v г + m р v р =0;

m г v г =- m р v р,

где m г v г импульс создаваемой струей газов, m р v р импульс, полученный ракетой.

Знак минус показывает, что направление движения ракеты и реактивной струи противоположны.

Устройство и принцип работы реактивного двигателя

В технике реактивные двигатели приводят в движение самолёты, ракеты, выводят на орбиты космические аппараты. В зависимости от назначения они имеют разное устройство. Но каждый из них имеет запас топлива, камеру для его сгорания и сопло, ускоряющее реактивную струю.

На межпланетных автоматических станциях оборудован также приборный отсек и кабины с системой жизнеобеспечения для космонавтов.

Современные космические ракеты это сложные, многоступенчатые летательные аппараты, использующие новейшие достижения инженерной мысли. После старта вначале сгорает топливо в нижней ступени, после чего она отделяется от ракеты, уменьшая её общую массу и увеличивая скорость.

Затем расходуется топливо во второй ступени и т. д. Наконец, летательный аппарат выводится на заданную траекторию и начинает свой самостоятельный полёт.

Немного помечтаем

Великий мечтатель и учёный К. Э. Циолковский подарил будущим поколениям уверенность в том, что реактивные двигатели позволят человечеству вырваться за пределы земной атмосферы и устремиться в космос. Его предвидение сбылось. Луна, и даже далёкие кометы успешно исследуются космическими аппаратами.

В космонавтике используют жидкостные реактивные двигатели. Используя в качестве топлива нефтепродукты, но скорости, которые удается получить с их помощью, недостаточны для очень дальних перелётов.

Возможно, вы, наши дорогие читатели, станете свидетелями полётов землян в другие галактики на аппаратах с ядерными, термоядерными или ионными реактивными двигателями.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Большое значение закон сохранения импульса имеет при рассмотрении реактивного движения.
Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно него, например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила , толкающая тело.
Особенность реактивной силы заключается в том, что она возникает в результате взаимодействия между собой частей самой системы без какого-либо взаимодействия с внешними телами.
В то время, как сила, сообщающая ускорение, например, пешеходу, кораблю или самолету, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.

Так движение тела можно получить в результате вытекания струи жидкости или газа.

В природе реактивное движение присуще в основном живым организмам, обитающим в водной среде.



В технике реактивное движение используется на речном транспорте (водометные двигатели), в автомобилестроении (гоночные автомобили), в военном деле, в авиации и космонавтике.
Все современные скоростные самолеты оснащены реактивными двигателями, т.к. они способны обеспечить необходимую скорость полета.
В космическом пространстве использовать другие двигатели, кроме реактивных, невозможно, так как там нет опоры, отталкиваясь от которой можно было бы бы получать ускорение.

История развития реактивной техники

Создателем русской боевой ракеты был ученый-артиллерист К.И. Константинов. При весе в 80 кг далььность полета ракеты Константинова достигала 4 км.




Идея применения реактивного движения в летательном аппарате, проект реактивного воздухоплавательного прибора, в 1881 году была выдвинута Н.И. Кибальчичем.




В 1903 году знаменитый ученый-физик К.Э. Циолковский доказал возможность полета в межпланетном пространстве и разработал проект первого ракетоплана с жидкостно-реактивным двигателем.




К.Э. Циолковский спроектировал космический ракетный поезд, составленный из ряда ракет, работающих поочередно и отпадающих по мере израсходования горючего.


Принципы применения реактивных двигателей

Основой любого реактивного двигателя является камера сгорания, в которой при сгорании топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Газы вырываются из узкого сопла ракеты с большой скоростью и создают реактивную тягу. В соответствии с законом сохранения импульса, ракета приобретает скорость в противоположном направлении.

Импульс системы (ракета-продукты сгорания) остается равным нулю. Так как масса ракеты уменьшается, то даже при постоянной скорости истечения газов ее скорость будет увеличиваться, постепенно достигая максимального значения.
Движение ракеты - это пример движения тела с переменной массой. Для расчета ее скорости используют закон сохранения импульса.



Реактивные двигатели делятся на ракетные двигатели и воздушно-реактивные двигатели.

Ракетные двигатели бывают на твердом или на жидком топливе.
В ракетных двигателях на твердом топливе топливо, содержащее и горючее, и окислитель, помешают внутрь камеры сгорания двигателя.
В жидкостно-реактивных двигателях , предназначенных для запуска космических кораблей, горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания. В качестве горючего в них можно использовать керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя, необходимого для горения, - жидкий кислород, азотную кислоту, и др.




Современные трехступенчатые космические ракеты запускаются вертикально, а после прохода плотных слоев атмосферы переводятся на полет в заданном направлении. Каждая ступень ракеты имеет свой бак с горючим и бак с окислителем, а также свой реактивный двигатель. По мере сгорания топлива отработанные ступени ракеты отбрасываются.




Воздушно-реактивные двигатели в настоящее время применяют главным образом в самолетах. Основное их отличие от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.
К воздушно-реактивным двигателям относятся турбокомпрессорные двигатели как с осевым, так и с центробежным компрессором.
Воздух в таких двигателях всасывается и сжимается компрессором, приводимым в движение газовой турбиной. Газы, выходящие из камеры сгорания, создают реактивную силу тяги и вращают ротор турбины.




При очень болььших скоростях полета сжатие газов в камере сгорания можно осуществить за счет встречного набегающего воздушного потока. Необходимость в компрессоре отпадает.

Явление отдачи, реактивное движение, формула Мещерского, Циолковского.

Явление отдачи наблюдается, когда тело под действием внутренних сил распадается на две части, разлетающиеся друг от друга.
Простой пример: из ствола орудия пороховые газы выбрасывают снаряд. Снаряд летит в одну сторону, а орудие, если оно не закреплено, откатывается назад − оно испытало отдачу. До выстрела орудия мы имели «тело», состоящее из самого орудия и снаряда внутри ствола. Произошел «распад» исходного тела − под действием внутренних сил оно «распалось» на две части (орудие и снаряд), движущиеся самостоятельно.
Вообразим следующую картину. Стоящий на скользком льду человек бросает в некотором направлении камень. Испытав отдачу, человек начнет скользить по льду в противоположном направлении.
 «Тело» человек + камень под действием мышечного усилия человека «распалось» на две части − на человека и камень. Отметим, что человек с камнем был поставлен на скользкий лед для того, чтобы существенно уменьшить силу трения и иметь дело с ситуацией, когда сумма внешних сил близка к нулю и работают лишь внутренние силы − человек действует на камень, бросая его, а камень действует в соответствии с третьим законом Ньютона на человека. В результате и наблюдается явление отдачи.
 Это явление можно объяснить с помощью закона сохранения импульса. Отвлекаясь от какой-либо жизненной ситуации, рассмотрим два тела с массами m 1 и m 2 , покоящиеся относительно некоторой инерциальной системы отсчета (пусть это будет Земля). Будем полагать, что действием на тело со стороны внешних сил можно пренебречь. Предположим, что в результате действия внутренних сил система распалась − тело массой m 1 приобрело скорость v 1 , а тело массой m 2 − скорость v 2 . До распада импульс системы равнялся нулю (p = 0 ); после распада его можно представить в виде

Из закона сохранения импульса следует, что

Отсюда получаем:

Как и следовало ожидать, векторы v 1 и v 2 направлены противоположно. Если, например, v 1 − скорость, с какой человек на льду бросил в горизонтальном направлении камень массой m 1 , то v 2 − скорость человека массой m 2 , какую он приобрел вследствие отдачи. Так как m 1 << m 2 , то из (1) следует, что

 Теперь предположим, что связка тел с массами M и m движется равномерно и прямолинейно со скоростью относительно неподвижной (инерциальной) системы отсчета. В результате действия внутренних сил (природа их в данном случае не имеет значения) связка распадается; тело с массой m приобретает скорость u относительно тела с массой M , так что его скорость относительно неподвижной системы отсчета оказывается равной

 Скорость тела с массой M в этой системе отсчета представим как

 Рассматривая систему тел как замкнутую, воспользуемся законом сохранения импульса, согласно которому

После раскрытия скобок и сокращений одинаковых слагаемых получаем соотношение

Из (2) видно, что направления векторов v 1 и u противоположны.
 Интересен частный случай, когда вектор направлен навстречу вектору v . В данном случае тело массой M будет после распада связки продолжать двигаться в направлении вектора v , при этом модуль его скорости увеличится вследствие отдачи и будет равен v + um/M .
 От явления отдачи перейдем к рассмотрению реактивного движения на примере движения ракеты. В самых общих чертах это движение объясняется достаточно просто. При сгорании топлива из сопла ракеты вырываются с весьма большой скоростью газы. Вследствие отдачи ракета движется в направлении, противоположном направлению истечения газов из сопла.
 Обозначим через v скорость ракеты относительно Земли в некоторый момент времени t . Скорость ракеты в момент t + Δt обозначим через v + Δv . Изменение скорости ракеты произошло в результате того, что из нее была выброшена масса газа ΔM со скоростью u по отношению к ракете. Скорость u называют скоростью истечения. По завершении промежутка времени Δt масса ракеты вместе с топливом уменьшилась на ΔM . Промежуток Δt полагаем достаточно малым, чтобы можно было считать, что масса ракеты с топливом постоянна на данном промежутке и в конце его меняется скачком в результате мгновенного выброса массы газа ΔM (впоследствии мы перейдем к пределу при Δt → 0 и тем самым заменим импульсивный выброс газов их непрерывным истечением из сопла ракеты). Если масса ракеты с топливом в момент t равна M , то в момент t + Δt она будет равна M − ΔM .
 Итак, в момент времени t есть ракета с топливом, имеющая массу M и скорость относительно Земли. В момент t + Δt есть, во-первых , ракета с топливом, имеющая массу M − ΔM и скорость v + Δv относительно Земли, и, во-вторых , порция газа, имеющая массу ΔM и скорость v + u относительно Земли. Пренебрегая взаимодействием ракеты с внешними телами, воспользуемся законом сохранения импульса и запишем:

Раскрывая скобки, получаем

 Произведения Mv , а также ΔMv сокращаются. Произведением ΔMΔv можно пренебречь, так как здесь перемножаются две малых величины; как принято говорить, такое произведение представляет собой величину второго порядка малости. В результате соотношение (4) преобразуется к виду (сравните с (3)):

Разделим обе части этого равенства на Δt ; получим

Учтем, что

и затем перейдем в обеих частях равенства (5) к пределу при Δt → 0 .

Предел

есть мгновенное ускорение ракеты.
Величину ΔM/dt назовем средним за промежуток времени Δt расходом топлива. Величина

мгновенный расход топлива для момента времени t . С учетом сделанных замечаний (6) примет вид

Ускорение a(t) вызывается силой

которую называют реактивной силой. Она пропорциональна расходу топлива и скорости истечения газа и направлена противоположно скорости истечения.
 Если на летящую ракету действует, кроме реактивной силы F p (t) , некоторая внешняя сила F(t) , то соотношение (7) следует
заменить соотношением:

 Это соотношение представляет собой обобщение второго закона Ньютона для движения тела переменной массы. Оно получило название формулы Мещерского (по имени российского ученого Ивана Всеволодовича Мещерского, исследовавшего механику тел переменной массы).

Вывод формулы (формула Циолковского), связывающей массу и скорость ракеты .
Примем, что топливо сгорает отдельными порциями массой ΔM = M/N , где М − масса ракеты перед выбросом из нее порции ΔM , а N − достаточно большое число. После сгорания первой порции масса ракеты станет равной

 После сгорания второй порции масса вновь уменьшится на (1/N)–ю часть, но уже от массы M 1 , и станет равной


 Рассуждая таким же образом далее, находим массу ракеты после сгорания n-й порции

 Рассмотрим теперь как меняется при этом скорость ракеты. При скорости истечения продуктов горения, равной u , масса ΔM уносит импульс Δp = uΔM . В соответствии с законом сохранения импульса такой же по величине, но противоположно направленный импульс получит ракета, в результате чего ее скорость увеличится на

 Таким образом, если вначале ракета покоилась, то после сгорания первой порции массой ΔM 1 = M 0 /N , имевшей импульс Δp 1 = M 0 u/N , скорость ракеты станет равной

 После сгорания второй порции топлива массой ΔM 2 = M 1 /N , унесшей импульс Δp 2 /(M 1 − M 1 /N) и составит

 Продолжая рассуждения далее, получим скорость ракеты после сгорания n-й порции:

Тогда масса ракеты, достигшей скорости v

индекс n здесь и далее опущен, поскольку надобности в нем больше нет.
 На самом деле топливо в ракете сгорает не отдельными порциями, а непрерывно. Для перехода к формуле, более правильно описывающей реальный случай, нужно считать N чрезвычайно большим числом. В таком случае единицей показателе степени последнего выражения можно пренебречь, после чего оно приобретет вид


или при неограниченном возрастании N

 Эта формула была выведена К.Э. Циолковским и носит его имя. Из нее хорошо видно, что ракета может достичь большой скорости, но при этом оставшаяся масса окажется много меньше первоначальной.

Задача 1
 Из ракеты массой M , движущейся со скоростью v , выбрасывается порция топлива m со скоростью u относительно ракеты. Какой станет скорость ракеты? Какую скорость будет иметь ракета после выброса 2-х , 3-х , k порций?

Решение

Воспользуемся законом сохранения импульса. Удобнее написать его в системе отсчета, движущейся с первоначальной скоростью ракеты v (так как скорость выброса топлива u задана относительно ракеты). В проекции на направление движения ракеты получим

откуда скорость ракеты

В неподвижной системе отсчета скорость ракеты после выброса первой порции топлива равна по модулю

Выброс второй порции топлива будем рассматривать в системе, движущейся со скоростью v 1 . Из закона сохранения импульса имеем

а в неподвижной системе


После k выбросов скорость ракеты будет равна

 Для сравнения найдем также скорость ракеты v k / при одноразовом выбросе топлива массой k m с той же скоростью u относительно ракеты.
 Для этого воспользуемся законом сохранения импульса, только запишем его сразу относительно неподвижной системы отсчета:

откуда

 Легко видеть, что v k / > v k . Такой результат связан с предположением, что скорость выброса топлива из ракеты в неподвижной системе отсчета постоянна и равна v − u . В действительности по мере ускорения ракеты скорость выброса топлива уменьшается (постоянная скорость выброса относительно ракеты). Поэтому первая формула для v k более точно описывает реальную ситуацию.

Задача 2
 Ракета перед стартом имеет массу m 0 = 120 кг . На какой высоте окажется ракета через t = 15 с после начала работы ее двигателей? Считайте расход топлива μ = 4 кг/с и скорость истечения газов относительно ракеты u = 1000 м/с постоянными. 1) Считайте поле тяготения Земли однородное, 2) Считайте поле тяготения Земли неоднородное.

Решение

1) Ось z направлена вертикально вверх
Запишем уравнение Мещерского в однородном поле тяготения Земли в виде

где m = m 0 − μt , а v 0 − скорость ракеты в момент времени t . Разделяя переменные, получаем уравнение

Решение данного уравнения, удовлетворяющего начальному условию v 0 = 0 при t = 0 , имеет вид

Разделяя еще раз переменные и учитывая, что начальное условие z 0 = 0 при t = 0 , находим

 Подставляя численные значения, получаем, что через 15 с после старта ракета будет на высоте около 3500 м, имея при этом скорость 540 м/с .

2) Учтем то обстоятельство, что неоднородность гравитационного поля Земли на рассматриваемых высотах мала. Поэтому для расчета движения в данном случае удобно применить метод последовательных приближений.
Пусть R − радиус Земли. Силу тяготения представим в виде

где M − масса Земли, λ = z/R << 1 .
 При движении ракеты в неоднородном поле при заданном законе изменения ее массы скорость движения ракеты можно представить в виде суммы: v = v 0 + v / , где v / << v 0 . Аналогично записываем z = z 0 + z / , где z / << z 0 . Подставляя эти выражения для v , z и F в уравнение Мещерского, находим

 В полученном уравнении оставляем только члены первого порядка малости, отбрасывая последнее слагаемое в правой части (не малые слагаемые дают в сумме нуль). Приходим к уравнению

где z 0 определено формулой (2). Теперь легко разделить переменные и найти

Принцип реактивного движения заключается в том, что этот вид движения возникает тогда, когда происходит отделение с некоторой скоростью, от тела его части. Классическим примером реактивного движения служит движение ракеты. К особенностям данного движения можно отнести то, что тело получает ускорение без взаимодействия с другими телами. Так, движение ракеты происходит за счет изменения ее массы. Масса ракеты уменьшается при истечении газов, которые возникают при сгорании топлива. Рассмотри движение ракеты. Допустим, что масса ракеты равна , а ее скорость в момент времени . Спустя время масса ракеты уменьшается на величину и становится равна: , скорость ракеты становится равной .

Тогда изменение импульса за время можно представить как:

где — скорость истечения газов по отношению к ракете. Если принять, что — величина малая высшего порядка в сравнении с остальными, то получим:

При действии на систему внешних сил () изменение импульса представим как:

Приравниваем правые части формул (2) и (3), получаем:

где выражение — носит название реактивной силы. При этом, если направления векторов и противоположны, то ракета ускоряется, в противном случае она тормозит. Уравнение (4) носит название уравнения движения тела переменной массы. Его часто записывают в виде (уравнение И.В. Мещерского):

Идея использования реактивной силы была предложена еще в XIX веке. Позднее К.Э. Циолковский выдвинул теорию движения ракеты и сформулировал основы теории жидкостного реактивного двигателя. Если положить, что на ракету не действуют внешние силы, то формула (4) получит вид:

Loading...Loading...