Бескислородный этап диссимиляции у человека происходит. Этапы диссимиляции: что это такое в биологии

Энергетический обмен (диссимиляция) это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ.
Организмы могут быть разделены на две группы по характеру диссимиляции – аэробы и анаэробы . Аэробы нуждаются в свободном кислороде для жизнедеятельности. У анаэробов в кислороде нет необходимости.

Термин «анаэробы » ввел Луи Пастер, открывший в 1861 году бактерии маслянокислого брожения. Анаэробное дыхание - совокупность биохимических реакций, протекающих в клетках живых организмов при использовании в качестве конечного акцептора электронов не кислорода, а других веществ (например, нитратов) и относится к процессам энергетического обмена (катаболизм, диссимиляция), которые характеризуются окислением углеводов, липидов и аминокислот до низкомолекулярных соединений.

Анаэробы - обширная группа организмов, как микро, так и макроуровня, к которой относятся:
- анаэробные микроорганизмы - обширная группа прокариотов и некоторые простейшие
- макроорганизмы - грибы, водоросли, растения и некоторые животные (класс фораминиферы, большинство гельминтов (класс сосальщики, ленточные черви, круглые черви и пр.).

Помимо этого анаэробное окисление глюкозы играет важную роль в работе поперечно-полосатой мускулатуры животных и человека (особенно в состоянии тканевой гипоксии ). Иными словами, человек – тоже частичный анаэроб!

Анаэробы - организмы, получающие энергию при отсутствии доступа кислорода путём субстратного фосфорилирования, конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ в присутствии конечного акцептора протонов организмами, осуществляющими окислительное фосфорилирование.

Пример анаэробной диссимиляции – брожение, то есть бескислородное ферментативное расщеп-ление органических веществ с образованием более простых органических веществ и выделением энергии. Например:

молочнокислое брожение : C6H12O6 + 2H3PO4 + 2АДФ → 2С3Н6О3 + 2АТФ + 2Н2О
спиртовое брожение : C6H12O6 + 2H3PO4 + 2АДФ → 2С2Н5ОН + 2АТФ + 2СО2

В первом случае получается молочная кислота С3Н6О3, во втором – спирт С2Н5ОН.

Образующиеся при брожении вещества являются органическими и, следовательно, содержат еще много энергии. Видов анаэробного обмена очень много – есть бактерии, использующие энергию серных, азотных, углеродных соединений и т.д.

Процессы расщепления органических соединений у аэробных организмов происходят в три этапа , каждый из которых сопровождается несколькими ферментативными реакциями.

Первый этап подготовительный . В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных – ферментами лизосом. На первом этапе происходит расщепление белков до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов, нуклеиновых кислот до нуклеотидов. Этот процесс называется пищеварением .

Второй этап бескислородный (гликолиз) . Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ. Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы С6Н12O6 в две молекулы пировиноградной кислоты (пирувата) С3Н4O3 и две молекулы АТФ, в которых запасается часть энергии, выделившейся при гликолизе: С6Н12O6 + 2АДФ + 2РН3O4 → 2С3Н4O3 + 2АТФ. Остальная энергия рассеивается в виде тепла. В этом процессе участвует кофермент .

В клетках дрожжей и растений (при недостатке кислорода ) пируват распадается на этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением.

Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С3Н6O3), которая накапливается в виде лактата, это проявляется болью в мышцах.

Третий этап кислородный , состоящий из двух последовательных процессов: а) б) . Его смысл заключается в том, что при кислородном дыхании пируват окисляется до окончательных продуктов – углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде 34 молекул АТФ (32 молекулы в цикле Кребса и 2 молекулы в ходе окислительного фосфорилирования). Эта энергия распада органических соединений обеспечивает реакции их синтеза в пластическом обмене. Кислородный этап возник после накопления в атмосфере достаточного количества молекулярного кислорода и появления аэробных организмов.

Окислительное фосфорилирование (клеточное дыхание) происходит на внутренних мембранах митохондрий, в которые встроены молекулы - переносчики, которые транспортируют электроны к молекулярному кислороду. В ходе этой стадии часть энергии рассеивается в виде тепла, а часть расходуется на образование АТФ.

Суммарная реакция энергетического обмена:

С6Н12O6 + 6O2 → 6СO2 + 6Н2O + 38АТФ (2гликолиз+34цКребса+2окисл.фосф).

В клетке постоянно происходит обмен веществ и энергии с окружающей средой. Обмен веществ (метаболизм ) - основное свойство живых организмов. На клеточном уровне метаболизм включает два процесса: ассимиляцию (пластический обмен) и диссимиляцию (энергетический обмен). Эти процессы происходят в клетке одновременно.

Диссимиляция (энергетический обмен) - совокупность реакций расщепления веществ. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза. По типу диссимиляции организмы делят на аэробные и анаэробные .

Аэробная диссимиляция

Энергетический обмен проходит в 3 этапа:

1-й этап - подготовительный.

На этом этапе молекулы сложных веществ (белков, жиров, углеводов, нуклеиновых кислот) распадаются до мономеров. Выделяется небольшое количество энергии, которая рассеивается в виде тепла. Синтез АТФ не происходит.

2-й этап - бескислородный (анаэробный).

Бескислородный распад протекает в цитоплазме клеток. Мономеры, образовавшиеся на первом этапе, расщепляются без участия кислорода, в несколько стадий. Расщепление происходит под действием ферментов с образованием энергии АТФ. Например, в мышцах (в цитоплазме клеток) молекула глюкозы распадается на две молекулы молочной кислоты и две молекулы АТФ

3-й этап - кислородное расщепление (аэробное дыхание).

Все реакции этой стадии катализируются ферментами и проходят при участии кислорода в митохондриях на кистах. Вещества, образовавшиеся в предыдущем этапе, окисляются до конечных продуктов - СО 2 и Н 2 О. При этом выделяется большое количество энергии. Данный процесс называют клеточным дыханием. При окислении двух молекул молочной кислоты образуется 36 молекул АТФ. В результате второго и третьего этапов при расщеплении одной молекулы С 6 Н 12 О 6 выделяется 38 молекул АТФ.

Анаэробная диссимиляция.

Распад глюкозы у анаэробныхбактерий может идти в бескислородных условиях. Этот процесс называется брожением . При брожении выделяется не вся энергия, заключенная в веществе, а лишь часть ее. Остальная энергия остается в химических связях в образовавшемся веществе. При спиртовом брожении образуется спирт и две молекулы АТФ.

Вопрос 3

Билет 5

1. Белки, их роль в организме;

2. Уровни организации живой материи;

3. Определить процентное содержание азотистых оснований в определенном фрагменте ДНК.

Вопрос 1

Белки.

В состав белков входят углерод, кислород, водород, азот. Мономерами белка являются аминокислоты.

Есть первичная, вторичная, третичная и четвертичная структуры белка. Белки первичной структуры могут с помощью водородных связей соединяться в спираль и образовывать вторичную структуру. Полипептидные цепи, скручиваясь в компактную структуру, образуют глобулу (шар) - это третичная структура белка. Большинство белков имеют третичную структуру. Аминокислоты активны только на поверхности глобулы. Белки, имеющие глобулярную структуру, объединяются вместе и образуют четвертичную структуру. Замена одной аминокислоты приводит к изменению свойств белка. При воздействии высокой температуры, кислот и других факторов может происходить разрушение белковой молекулы (денатурация). Иногда денатурированный белок при изменении условий вновь может восстановить свою структуру (ренатурация) и это возможно лишь тогда, когда не разрушена первичная структура белка.


Белки бывают простые и сложные. Простые белки состоят только из аминокислот: например, альбумины, глобулины.

Сложные белки состоят из аминокислот и других органических соединений: например, липопротеины, гликопротеины.

Функции белков:

1. Энергетическая. При распаде 1 г белка выделяется 17,6 кДж энергии.

2. Ферментативная. Служат катализаторами биохимических реакций. Катализаторы - ферменты. Ферменты ускоряют биохимические реакции, но не входят в состав конечных продуктов. Ферменты строго специфичны.

3. Структурная. Белки входят в состав мембран и органоидов клетки.

4. Транспортная. Белки связывают и переносят различные вещества и внутри клетки, и по всему организму. Например, гемоглобин переносит кислород и СО 2 в крови позвоночных.

5. Защитная. Защита организма от вредных воздействий: выработка антител.

6. Сократительная. Благодаря наличию белков актина и миозина в мышечных волокнах происходит сокращение мышц.

7. Белки-гормоны. Обеспечивают регуляторную функцию.

Синтез веществ, идущий в клетке, называют биологическим синтезомили сокращенно биосинтезом.

Все реакции биосинтеза идут с поглощением энергии.

Совокупность реакций биосинтеза называют пластическим обменом или ассимиляцией(лат. "симилис" - сходный). Смысл этого процесса состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.

Реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные. Белки распадаются на аминокислоты, крахмал - на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуется совсем простые, бедные энергией вещества - СО 2 и Н 2 О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии. Биологическое значение этих реакций состоит в обеспечении клетки энергией. Любая форма активности - движение, секреция, биосинтез и др. - нуждается в затрате энергии.

Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. С одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез, обслуживающих эти реакции ферментов, так как в процессе работы они изнашиваются и разрушаются.

Сложные системы реакций, составляющие процесс пластического и энергетического обменов, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю среду выделяются вещества, которые клеткой больше не могут быть использованы.

Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называютобменом веществ и энергии.Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.

18 Аденозиндифосфат (адф) и аденозинтрифосфат (атф), их строение, локализация и роль в энергетическом обмене клетки.

19. Обмен веществ и энергии в клетке. Фотосинтез, хемосинтез. Процесс ассимиляции (основные реакции). Обмен веществ представляет собой единство ассимиляции и диссимиляции. Диссимиляция представляет собой экзотермический процесс, т.е. процесс освобождения энергии за счет распада веществ клетки. Вещества, образующиеся при диссимиляции, также подвергаются дальнейшим преобразованиям. Ассимиляция – процесс уподобления веществ, поступающих в клетку, специфическим веществам, характерным для данной клетки. Ассимиляция – эндотермический процесс, требующий затраты энергии. Источником энергии являются ранее синтезированные вещества, подвергшиеся распаду в процессе диссимиляции. Фотосинтез -это процесс превращения энергии солнечного света в энергию химических соединений. Фотосинтез -это процесс образования органических веществ(глюкозы,а затем крахмала)из неорганических веществ, в хлоропластах на свету с выделением кислорода. Протекает фотосинтез в 2 фазы: световая и теневая. Световая фаза протекает на свету. Во время световой фазы происходит возбуждение хлорофилла путем поглощения кванта света. В световой фазе происходит фотолиз воды с последующим выделением кислорода в атмосферу. Кроме того, в световой фазе фотосинтеза протекают следующие процессы: накопление протонов водорода, синтез АТФ из АДФ, присоединение H+ к специальному переносчику НАДФ

ИТОГ СВЕТОВОЙ РЕАКЦИИ:

Образование АТФ и НАДФ*H, выделение O2 в атмосферу.

Темновая фаза (цикл фиксации CO2, цикл Кальвина) протекает в строме хлоропласта. В темновой фазе происходит следующие процессы

Из световой реакции берется АТФ и НАДФ*H

Из атмосферы - CO2

1)Фиксация CO2

2)Образование глюкозы

3)Образование крахмала

ИТОГОВОЕ УРАВНЕНИЕ:

6CO2+6H2O---(хлорофилл,свет)-С6H12O6+6O2

Хемосинтез – синтез органических веществ за счет энергии химических реакций. Хемосинтез осуществляется бактериями Основные реакции фотосинтеза: 1) окисление серы: 2H2S + O2 = 2H20 + 2S

2S + O2 + 2H2O = 2H2SO4 2) окисление азота: 2NH3 + 3O2 = 2HNO2 + 2H2O 2HNO2 + O2 = HNO3 3) окисление кислорода 2H2 + O2 = 2H2O 4) окисление железа: 4FeCO3 + O2 + 6H2O = 4Fe(OH)3 + 4CO2

20. Обмен веществ в клетке. Процесс диссимиляции. Основные этапы энергетического обмена. Обмен веществ представляет собой единство ассимиляции и диссимиляции. при диссимиляции, также подвергаются дальнейшим преобразованиям. Ассимиляция – процесс уподобления веществ, поступающих в клетку, специфическим веществам, характерным для данной клетки. Ассимиляция – эндотермический процесс, требующий затраты энергии. Источником энергии являются ранее синтезированные вещества, подвергшиеся распаду в процессе диссимиляции. Диссимиляция представляет собой экзотермический процесс, т.е. процесс освобождения энергии за счет распада веществ клетки. Вещества, образующиеся Все функции, выполняемы клеткой, требуют затрат энергии, которая освобождается в процессе диссимиляции. Биологическое значение диссимиляции сводится не только к освобождению энергии, потребной клетке, но нередко и к разрушению веществ, вредных для организма Весь процесс диссимиляции, или энергетического обмена, состоит из 3 этапов: подготовительный, бескислородный и кислородный. В подготовительном этапе под действием ферментов происходит расщепление полимеров до мономеров. Так, белки расщепляются до аминокислот, полисахариды – до моносахаридов, жиры – до глицерина и жирных кислот. В подготовительном этапе выделяется мало энергии и рассеивается обычно в виде тепла. 2) Бескислородный или анаэробный этап. Разберем на примере глюкозы. В анаэробном этапе происходит распад глюкозы до молочной кислоты: С6H12O6 + 2АДФ + Н3РО4 = 2C3H6O3 + 2Н2О + 2АТФ (молочная к-та) 3) Кислородный этап. При кислородном этапе вещества окисляются до СО2 и Н2О. При доступе кислорода пировиноградная кислота проникает в митохондрии и подвергается окислению: С3H6O3+6O2-6CO2+6H2O+36АТФ Суммарное уравнение: C6H12O6+6O2-6CO2+6H2O+38АТФ

Диссимиляция (катаболизм) - совокупность процессов, при которых происходит окисление сложных органических веществ и превращение их в неорганические (воду, углекислый газ, мочевину (простое органическое вещество) и др.), сопровождающееся синтезом АТФ, которая используется организмом в процессах ассимиляции и других процессах жизнедеятельности организма.

Главной функцией процессов диссимиляции в организме является перевод энергии из «неудобной» организму формы (энергии химических связей сложных органических веществ - белков, углеводов, жиров) в «удобную» форму - макроэргические связи соединения типа АТФ и АДФ, которых за счет процессов фосфорилирования легко переходит от одного соединения к другому. Это одна из биолого-экологических функций ассимиляции. Другой такой функцией является реализация круговорота веществ, когда органические вещества превращаются в неорганические, а последние вновь вступают в круговорот, участвуя в образовании органических веществ.

Перевод энергии из «неудобной» для организма формы в «удобную» происходит за счет превращения сначала АМФ в АДФ, а затем АДФ в АТФ.

Превращения аденозинфосфатов с образованием макроэргических связей выражаются схемами: АМФ + Н 3 РO 4 → АДФ + Н 2 O (поглощение энергии); АДФ + Н 3 РO 4 = АТФ + Н 2 O (поглощение энергии).

В результате процессов диссимиляции накапливается АТФ, которая затем используется в процессах ассимиляции, а энергия, заключенная в макроэргических связях молекул АТФ, передается на другие молекулы либо за счет процессов фосфорилирования (остаток переходит с молекулы АТФ на другие молекулы), либо за счет гидролиза АТФ и ее превращения в АДФ и фосфорную кислоту.

Организмы по характеру участия в процессах диссимиляции молекулярного кислорода делятся на анаэробные (бескислородные) и аэробные (кислородные). В анаэробных организмах диссимиляция осуществляется за счет брожения, а в аэробных - за счет в широком понимании сущности этого понятия.

Брожение - совокупность процессов разложения сложных органических веществ до более простых, сопровождающаяся выделением энергии и синтезом АТФ.

В природе наиболее распространенными видами брожения являются молочнокислое и спиртовое. Как способ «извлечения» энергии брожение - малоэффективный процесс: так, при молочнокислом брожении из 1 моль глюкозы образуется 2 моль АТФ.

1. Молочнокислое брожение - анаэробный процесс распада глюкозы до молочной кислоты. Выражается схемой:

С 6 Н 12 O 6 (глюкоза) → 2СН 3 СН(ОН)СООН (молочная кислота)

(выделяется энергия, под действием которой синтезируется две молекулы АТФ).

Этот вид брожения характерен для молочнокислых бактерий, в присутствии которых происходит скисание молока.

Молочнокислое брожение является одной из стадий процесса дыхания (в широком смысле) у аэробных организмов, в том числе и у человека.

2. Спиртовое брожение - аэробный процесс распада глюкозы, сопровождающийся образованием этилового спирта и углекислого газа; протекает по схеме:

С 6 Н 12 О 6 (глюкоза) → 2СО 2 + 2С 2 Н 5 ОН (этиловый спирт)

(выделяется энергия, используемая для синтеза АТФ).

Этот вид брожения происходит в плодах, в других органах растения, находящихся в анаэробной среде.

В природе наиболее широкое распространение имеет другой способ диссимиляции - дыхание, которое реализуется в окислительной среде, т. е. среде, содержащей молекулярный кислород. Процесс дыхания состоит из двух частей: газообмена и сложной последовательности биохимических процессов окисления органических соединений, конечными продуктами которых являются углекислый газ, аммиак (превращается в другие вещества) и некоторые другие соединения (сероводород, неорганические соединения фосфора и др.).

В обиходе дыхание рассматривается как процесс газообмена (это понимание понятия «дыхания» в узком смысле). Так, зоологи в организмах высших животных выделяют систему органов дыхания - в этих органах осуществляется газообмен, в результате которого из организма удаляется СО 2 , а в организм поступает О 2 (мы «дышим», т. е. выделяем углекислый газ и поглощаем молекулярный кислород).

В данном пособии дыхание рассматривается в широком смысле этого слова как совокупность процессов газообмена, перенесения газов по организму и совокупность химических процессов, при которых сложные органические вещества превращаются в неорганические, при этом энергия усваивается организмом в форме АТФ, синтезирующейся в процессе диссимиляции.

Итак, процесс дыхания в широком смысле состоит из двух фаз: газообмена и совокупности химических процессов освобождения энергии и синтеза АТФ. Кратко охарактеризуем эти фазы.

1. Газообмен.

Для одноклеточных и относительно просто устроенных организмов (как растительных, так животных и грибов) газообмен протекает на всей поверхности тела: кислород поступает в клетки, а углекислый газ выделяется в окружающую среду. У высших растений роль органов дыхания играют или устьица(листья), или особо устроенные поры (чечевички) в коре многолетних органов (стебли, корни), кроме того, корни поглощают кислород и выделяют углекислый газ корневыми волосками. У высокоорганизованных многоклеточных животных имеются сложно устроенные органы дыхания - это или жабры (у водных животных), или легкие (высшие животные типа Позвоночные), или система трахей (насекомые).

Рассмотрим газообмен на примере человека - представителя типа Позвоночные. Этот процесс протекает достаточно сложно и начинается в легких, в которых в капиллярах альвеол кровь, обогащенная СO 2 (венозная ), контактирует с воздухом, богатым кислородом (поступил в легкие во время вдоха), за счет чего в легких выделяется углекислый газ, а молекулярный кислород взаимодействует с гемоглобином крови, образуя соединение алого цвета - оксигемоглобин (О 2 вытесняет СО 2 из его соединения с гемоглобином). В полость легких диффундирует и СО 2 , содержащийся в плазме крови. Возникшая артериальная кровь по венам легких поступает в левое предсердие, а из него - в левый желудочек и аорту. Далее кровь по кровеносным сосудам разносится к тканям различных органов и через капилляры в тканях углекислый газ из тканевой жидкости (в тканевую жидкость СО 2 поступил из клеток) поступает в эритроциты крови, частично реагируя с оксигемоглобином, а частично растворяясь в плазме клетки. Молекулярный кислород диффундирует сначала в тканевую жидкость, а потом - в клетки. В результате охарактеризованных процессов в тканях образуется венозная кровь, которая из капилляров поступает в вены, а затем - в правое предсердие, правый желудочек, из которого через легочные артерии поступает в легкие и процесс повторяется.

2. Характеристика химических процессов окисления при диссимиляции.

Химизм «освобождения энергии», содержащейся в сложных биохимических соединениях, сложен и протекает в три этапа.

1 этап - подготовительный.

Этот этап протекает в любом организме и состоит в том, что сложные органические вещества превращаются в более простые ( - в смесь природных альфа-аминокислот; полисахара - в моносахара; - в смесь глицерина и жирных кислот). При протекании данного этапа выделяется небольшое количество энергии, которую организм практически не использует - она рассеивается.

2 этап - анаэробный.

Он представляет собой процессы брожения. Наиболее важным процессом брожения является молочнокислое брожение, которое можно изобразить схемой:

С 6 Н 12 О 6 (глюкоза) + 2АДФ + 2Н 3 РО 4 → 2 АТФ + 2Н 2 О + СН 3 СН(ОН)СООН (молочная кислота)

Этот этап необходим организмам для реализации их физиологических функций (совершение механической работы, перемещения организма в пространстве и т. д.). Кроме того, молочная кислота является веществом, вступающим в третий этап.

3 этап - аэробный.

Для осуществления этого этапа необходим молекулярный кислород. Он реализуется в особых органоидах клетки - митохондриях (их образно называют «энергетическими станциями клетки»). Аэробный этап представляет собой сложнейшую цепь превращений, в результате которых образуются неорганические вещества. Если превращениям подвергалась глюкоза, то схематически аэробный этап можно изобразить так:

2СН 3 СН(ОН)СООН (молочная кислота) + 6О 2 + 36 АДФ + 36 Н 3 Р04 6СО 2 + 42Н 2 О + 36АТФ

Две молекулы молочной кислоты взяты потому, что из одной молекулы глюкозы при молочнокислом брожении образуется две молекулы кислоты.

Итак, при полном распаде одной молекулы глюкозы до СО 2 и Н 2 О синтезируется 38 (36+2) молекул АТФ, что соответствует 55%-му усвоению энергии, которая выделяется при полном окислении глюкозы до указанных выше продуктов.

Завершая рассмотрение процессов диссимиляции следует отметить различие в газообмене растений и животных, а для газообмена растений - различие газообмена днем и ночью. Следует помнить, что и у растений и у животных ночью газообмен одинаков - организм поглощает кислород и выделяет в среду обитания СО 2 . Днем газообмен у растений состоит в том, что растение на свету поглощает СО 2 , а выделяет в среду обитания О 2 (у животных наоборот - выделяется СО 2 , а поглощается кислород). Из вышесказанного следует экологический вывод об особенностях жилища: в спальне не следует держать много растений (Обоснуйте почему).

Диссимиляция - это комплекс химических реакций, в которых происходит постепенный распад сложных органических веществ до более простых. Этот процесс сопровождается высвобождением энергии, значительная часть которой используется в синтезе АТФ.

Диссимиляция в биологии

Диссимиляция является процессом, противоположным ассимиляции. В качестве исходных веществ, подлежащих распаду, выступают нуклеиновые кислоты, белки, жиры и углеводы. А конечные продукты - это вода, углекислый газ и аммиак. В организме животных продукты распада по мере постепенного накопления выводятся наружу. А у растений углекислый газ выделяется частично, а аммиак в полном объеме применяется в процессе ассимиляции, служа исходным материалом для биосинтеза органических соединений.

Взаимосвязь диссимиляции и ассимиляции позволяет тканям организма постоянно обновляться. Например, в течение 10 дней в человеческой крови обновляется половина клеток альбумина, а за 4 месяца перерождаются все эритроциты. Соотношение интенсивности двух противоположных процессов обмена веществ зависит от многих факторов. Это и стадия развития организма, и возраст, и физиологическое состояние. В ходе роста и развития в организме преобладает ассимиляция, в результате образовываются новые клетки, ткани и органы, происходит их дифференциация, то есть масса тела увеличивается. В случае наличия патологий и при голодании процесс диссимиляции преобладает над ассимиляцией, и тело уменьшается в весе.

Классификация организмов по характеру диссимиляции

Все организмы можно поделить на две группы, в зависимости от условий, в которых протекает диссимиляция. Это аэробы и анаэробы. Первым для жизнедеятельности требуется свободный кислород, вторые не испытывают необходимости в нем. У анаэробов диссимиляция протекает путем брожения, которое представляет собой бескислородное ферментативное расщепление органических веществ до более простых. Например, молочнокислое или спиртовое брожение.

Этапы диссимиляции у аэробных организмов: подготовительный этап

Расщепление органических веществ у аэробов осуществляется в три шага. При этом на каждом из них происходит несколько определенных ферментативных реакций.

Первый этап - подготовительный. Основная роль на этой стадии принадлежит у многоклеточных организмов пищеварительным ферментам, находящимся в желудочно-кишечном тракте. У одноклеточных - ферментам лизосом. В ходе первого этапа белки распадаются на аминокислоты, жиры образуют глицерин и жирные кислоты, полисахариды расщепляются на моносахариды, нуклеиновые кислоты на нуклеотиды.

Гликолиз

Второй этап диссимиляции - гликолиз. Он протекает без кислорода. Биологическая сущность гликолиза состоит в том, что он представляет собой начало расщепления и окисления глюкозы, в результате чего накапливается свободная энергия в виде 2 молекул АТФ. Это происходит в ходе нескольких последовательно идущих реакций, конечным итогом которых становится образование из одной молекулы глюкозы двух молекул пирувата и такого же количества АТФ. Именно в виде аденозинтрифосфорной кислоты запасается часть энергии, которая выделилась в результате гликолиза, Остальная часть подлежит рассеиванию в виде тепла. Химическая реакция гликолиза: С6Н12O6 + 2АДФ + 2Ф → 2С3Н4O3 + 2АТФ.

В условиях недостатка кислорода в растительных клетках и в клетках дрожжей пирувират расщепляется на два вещества: этиловый спирт и углекислый газ. Это и есть спиртовое брожение.

Количество энергии, высвобождаемой при гликолизе, недостаточно для тех организмов, которые дышат кислородом. Именно поэтому в организме животных и человека при больших физических нагрузках в мышцах синтезируется служащая резервным источником энергии и накапливающаяся в виде лактата. Характерным признаком данного процесса является появление боли в мышцах.

Кислородный этап

Диссимиляция - это очень сложный процесс, и третий кислородный этап также представляет собой две последовательно идущих реакции. Речь идет о цикле Кребса и окислительном фосфорилировании.

В ходе кислородного дыхания происходит окисление пирувирата до окончательных продуктов, которыми являются СО2 и Н2О. При этом выделяется энергия, запасаемая в виде 36 молекул АТФ. Затем эта же энергия обеспечивает синтез органических веществ в пластическом объеме. Эволюционно возникновение данного этапа связано с накоплением в атмосфере молекулярного кислорода и появлением аэробных организмов.

Местом осуществления (клеточного дыхания) являются внутренние мембраны митохондрий, внутри которых имеются молекулы-переносчики, осуществляющие транспорт электронов к молекулярному кислороду. Энергия, образуемая на этой стадии, частично расссеивается в виде тепла, остальная же идет на образование АТФ.

Диссимиляция в биологии - это реакция которого выглядит так: С6Н12O6 + 6О2 → 6СО2 + 6Н2O + 38АТФ.

Таким образом, диссимиляция - это совокупность реакций, происходящих за счет органических веществ, которые были ранее синтезированы клеткой, и свободного кислорода, который поступил из внешней среды в процессе дыхания.

Loading...Loading...