Валентность и валентные электроны. Большая энциклопедия нефти и газа

Железо (Ferrum, Fe) - химический элемент VIII группы периодической системы Д.И. Менделеева, входит в состав дыхательных пигментов, в т.ч. гемоглобина, участвует в связывании и переносе кислорода к тканям в организме животных и человека.

Атомный номер железа 26, атомная масса 55,847. В природе обнаружены 4 стабильных изотопа железа; известны 6 радиоактивных изотопов железа с массовыми числами от 52 до 61, из которых в медицине для исследования эритропоэза, обмена и всасывания железа применяют 59 Fe.

Чистое железо представляет собой блестящий белый ковкий металл, t пл 1539±5°, t кип около 3200°, относительная плотность 7,874; проявляет свойства ферромагнетиков (веществ, у которых ниже определенной температуры появляется самопроизвольная намагниченность). Железо обладает переменной валентностью; соединения железа , имеющего валентность +2 и +3, наиболее устойчивы, кроме того, железо может проявлять валентность +1, +4 и +6. В природе оно распространено преимущественно в виде соединений трехвалентного железа. В растениях, животных и микроорганизмах железо присутствует в составе сложных органических соединений и в небольших количествах в виде ионов Fe 2+ и Fe 3+ .

В организме взрослого человека содержится 4-5 г железа, изкоторых около 70% входит в состав гемоглобина (см. Кровь ), около 5-10% - в состав миоглобина, около 20-25% приходится на так называемое резервное железо и не более 0,1% железа находится в плазме крови; в клетках и тканях Ж. присутствует в составе дыхательных ферментов (его относительное содержание - около 1% железа организма). В плазме крови определяется так называемое геминовое железо , железо ферритина, внутрисосудистого гемоглобина и трансферрина. Геминовое железо входит в состав гемина (производного гема, в отличие от гемоглобина, содержащего только одну порфириновую группу). Ферритин представляет собой самый богатый железом сывороточный белок (в его составе имеется мицелла, содержащая до 4300 атомов окисленного железа), состоящий из белка апоферритина и гидрооксидфосфата железа.

Основная часть железа плазмы крови связана с белком трансферрином (сидерофиллином) - главным компонентом фракции b 1 -глобулинов. Трансферрин находится в крови в концентрации около 0,4 г /100 мл и при нормальном содержании Ж. в плазме крови (около 100 мкг /100 мл ) насыщен железом в среднем на 30%. Так называемая ненасыщенная железосвязывающая способность крови (НЖСС) определяется дополнительным количеством железа, которое может быть связано трансферрином, а общая железосвязывающая способность крови (ОЖСС) - общим количеством железа, которое способен связать трансферрин. В норме ОЖСС крови у мужчин составляет 45-75 мкмоль/л (250-400 мкг /100 мл ), у женщин на 10-15% ниже. Прочность комплекса трансферрин - железо максимальна при рН 7,0. При снижении величины рН, а также при восстановлении Ж. комплекс распадается на белок и так называемое кислотно-отщепляемое (негеминовое) железо . Концентрация негеминового железа в плазме крови зависит от возраста, пола и времени суток и составляет у взрослых мужчин 12-32 мкмоль/л (65-175 мкг /100 мл ), у взрослых женщин она на 10-15% ниже. Выведение железа с мочой в среднем в сутки равно 60-100 мкг .

Гиперсидеремия (повышение концентрации негеминового Ж. в плазме крови) с одновременным снижением НЖСС наблюдается при гемосидерозе , гемохроматозе , некоторых анемиях , острых и хронических инфекциях, циррозе печени , уремии (см. Почечная недостаточность ), злокачественных новообразованиях, гемолитической и паренхиматозной желтухах . Гипосидеремия (снижение концентрации негеминового железа в плазме крови), сопровождающаяся одновременным повышением НЖСС, наблюдается при истощений резервов Ж. , недостаточном его поступлении с пищей и при состояниях, сопровождающихся повышенной потребностью в железе (беременности, кровопотере, гипохромных анемиях, острых инфекционных болезнях и др.). Ж. может откладываться в тканях организма (сидероз). У шахтеров, занятых на разработках красного железняка, наблюдается экзогенный сидероз, при этом в легких откладывается железо в виде оксида Fe(III). В результате избыточного разрушения гемоглобина образуется пигмент гемосидерин - агрегат гидрооксида Fe(lll) с белками, гликозами-ногликанами и липидами, накопление гранул которого (эндогенный сидероз) происходит, например, в местах кровоизлияний. Поскольку обмен железа в организме в значительной степени определяется состоянием печени, определение содержания Ж. в плазме крови может быть использовано в качестве дополнительного функционального теста, свидетельствующего о состоянии печени.

Установлено, что ионы свободного Fe(ll), а также комплексные соединения железа могут инициировать свободнорадикальное перекисное окисление липидов (универсальный механизм повреждения биологических мембран, белков и нуклеиновых кислот) в организме. В связи с этим определение свободного ионизированного Ж. в биологических жидкостях приобретает особую важность. Так, содержание ионизированного железа повышается в синовиальной жидкости при артритах и в цереброспинальной жидкости при некоторых неврологических заболеваниях.

Ж. поступает в организм человека с пищей. К продуктам питания, богатым железом , относятся печень, чернослив, фасоль, горох, гречневая крупа, а также овсяная крупа, ржаной хлеб, мясо, яйца, шоколад, шпинат, яблоки, абрикосы. Содержание усвояемого Ж. в продуктах животного происхождения составляет 10-20% всего, содержащегося в них железа, в растительных продуктах 1-6%. У взрослого человека потребность в железе определяется необходимостью компенсации его потерь, а также степенью усвоения Ж. из пищи. Потребность в железе у женщин на 30-90% выше, чем у мужчин; у 15-16-летних юношей потребность в Ж. значительно выше, чем у взрослых мужчин и детей. У женщин репродуктивного возраста половина и более необходимого железо расходуется на компенсацию потерь гемоглобина при менструациях. При беременности потребность в Ж. возрастает примерно на 60%. Всасывание железа увеличено при железодефицитных состояниях. Плохо всасывается в кишечнике Ж. органических соединений; всасывание Ж. снижается и за счет образования его нерастворимых солей (так, при избытке в рационе неорганического фосфора, образующего с железосодержащими веществами нерастворимые соединения, может развиться железодефицитная анемия). Наиболее усвояемой формой железа является ионизированное Fe(ll), поэтому всасыванию Ж. способствует наличие соляной кислоты, вызывающей его ионизацию, и восстановителей, например аскорбиновой кислоты, способствующих восстановлению Fe(lll) до Fe(ll), а также веществ, которые могут связывать железо , образуя с ним усвояемые комплексы (в желудке - специфического гликопротеина, в кишечнике - алоферритина и аминокислот, содержащих сульфгидрильные группы). Несмотря на наличие в организме этих механизмов повышения усвояемости железа пищи, практическая потребность в Ж. в 5-10 раз превышает действительную физиологическую потребность в нем.

Основная часть всосавшегося в кишечнике железа поступает в кровоток, а затем в костный мозг, где используется главным образом для синтеза гемоглобина. Поступающее в эпителиальные клетки слизистой оболочки кишечника Fe(ll) быстро окисляется до гидрооксида Fe(lll), который соединяется с апоферритином, поэтому всасывание Ж. слизистой оболочкой кишечника лимитируется связывающей способностью апоферритина. Депонирование железа происходит в печени, где оно практически полностью находится в составе ферритина. Пути выведения избытка железа отсутствуют: при превышении емкости ферритинового депо избыток железа аккумулируется в печени и других органах в виде гранул гемосидерина, содержащих до 37% железа (по массе).

Содержание железа в сыворотке крови и в моче определяют по цветной реакции с сульфонированным батофенантролином. Железосвязывающую способность сыворотки крови определяют путем выдерживания испытуемой сыворотки с раствором Fe(lll); при этом весь трансферрин насыщается железом. Избыток солей железа удаляют путем их адсорбции на карбонате магния, который затем удаляют центрифугированием, и железо в надосадочной жидкости определяют с сульфонированным батофенантролином.

Участие железа в образовании гемоглобина обусловливает применение его препаратов в качестве антианемических средств .

Библиогр.: Лабораторные методы исследования в клинике, под ред. В.В. Меньшикова, с. 267, М., 1987; Петров В.Н. Физиология и патология обмена железа, Л., 1982, библиогр.; Щерба М.М. и др. Железодефицитные состояния, Л., 1975.

В разделе на вопрос какая валентность у Fe (железо) может ли она меняться? заданный автором ххх хххх лучший ответ это Лучше (удобнее) обсуждать вопрос, используя понятие "степень окисления", хотя это и не одно и тоже, что "валентность". Железо реально имеет ЧЕТЫРЕ устойчивые степени окисления: 0, +2, +3 и +6. Устойчивые в том смысле, что каждой из них соответствуют свои химические СОЕДИНЕНИЯ, например: Fe(CO)5 (0, карбонил железа) ; FeSO4 (+2, сульфат железа II); FeCl3 (+3, хлорид железа III); K2FeO4 (+6, оксоферрат калия) . Я надеюсь, когда нибудь синтезируют и соединения железа с максимально возможной степенью окисления +8 - пока это никому не удалось.

Ответ от Kira [новичек]
Понятие валентности нам давали еще в школе. А в вузе, когда писали уравнения окислительно-восстановительных реакций, уже пользовались почти исключительно степенью окисления. Для железа +2 и +3 - самые распространенные. Потом ввели еще одно понятие - координационное число. Тогда понятие валентности стало как бы "размываться". Под ней подразумевают то одно, то другое. Так в Fe(CO)5 степень окисления железа - 0, а координационное число - 5. (Тогда в оксоферрат-анионе (FeO4)2- к. ч. железа равно 4.


Ответ от Просвещение [гуру]
2 и 3 да может


Ответ от Невролог [гуру]
Валентность, точнее степени окисления у Fe +2. +3 и +6. Естественно, она может изменяться. Самая устойчивая +3.

Железо (Fe, Ferrum) называют металлом жизни! И, как правильно отметил советский минералог академик А. Е. Ферсман: «Не будь железа, на Земле не смогло бы существовать ничто живое, ведь этот химический элемент входит в кровь всех представителей животного мира нашей планеты». Сегодня доказано, что железо - универсальный элемент, который обеспечивает функционирование более сотни белков и ферментов в нашем организме. В составе гема железо является одним из компонентов гемоглобина - универсальной молекулы, обеспечивающей связывание, транспорт и передачу кислорода клеткам различных органов и тканей, а также миоглобина - гемсодержащего белка мышечной ткани. Кроме того, железо участвует в ряде биологически важних процессов среди которых процесс деления клеток, биосинтезе ДНК, коллагена, а также в функциональной активности иммунной и нервной систем. И если по каким-либо причинам в нашем организме не хватает железа, то происходит сбой в работе всего организма, степень и выраженность которого пропорциональна степени недостатка этого микроэлемента.

В целом, в организме взрослого здорового человека содержится примерно 4–5 г железа.

Источником поступления в организм железа является пища.

Различают два вида железа: гемовое и негемовое. Гемовое железо входит в состав гемоглобина. Оно содержится лишь в небольшой части пищевого рациона (мясные продукты), всасывается на 20-30%, на его всасывание практически не влияют другие компоненты пищи. Негемовое железо находится в свободной ионной форме - двухвалентного (Fe II) или трехвалентного железа (Fe III). Большая часть пищевого железа - негемовое (содержится преимущественно в овощах). Степень его усвоения ниже, чем гемового, и зависит от целого ряда факторов. Из продуктов питания усваивается только двухвалентное негемовое железо. Чтобы восстановить трехвалентное железо в двухвалентное, необходим восстановитель (соляная кислота, аскорбиновая кислота, янтарная кислота и др.)

Сбалансированная ежедневная диета содержит около 5–10 мг железа (гемового и негемового), но всасывается не более 1–2 мг.

Обмен железа в организме осуществляется в замкнутой системе. Его суточный расход составляет в среднем 1–1,5 мг (при отсутствии потерь крови). Равновесие поддерживается за счет поступления извне такого же количества железа.

Обмен железа в организме включает следующие процессы:

  • всасывание в кишечнике;
  • транспорт к тканям (трансферрин);
  • утилизацию тканями (миоглобин, гем, негемовые ферменты);
  • депонирование (ферритин, гемосидерин);
  • экскрецию и потери.

Важно отметить, что чем больше дефицит железа в организме, тем интенсивней происходит всасывание его в кишечнике, при анемиях в процессе всасывания участвуют все отделы тонкого кишечника!

Большая часть железа из разрушающихся эритроцитов (более 20 мг ежесуточно) вновь поступает в гемоглобин. Общая потеря железа при десквамации клеток кожи и кишечника достигает около 1 мг в сутки, около 0,4 мг выделяется с калом, 0,25 мг - с желчью, менее 0,1 мг - с мочой. Указанные потери являются общими для мужчин и женщин.

Кроме того, каждая женщина за одну менструацию теряет 15–25 мг железа. Во время беременности и кормления грудью в сутки ей требуется дополнительно около 20–30 мг железа. Принимая во внимание, что суточное поступление железа с пищей составляет только 1–3 мг, в указанные физиологические периоды женщины имеют отрицательный баланс железа.

Основные фонды железа в организме условно можно подразделить на:

  • гемовое (клеточное) железо: составляет значительную часть (70–75%) от общего количества железа в организме, участвует во внутреннем обмене железа и входит в состав гемоглобина, миоглобина, ферментов (цитохромов, каталаз, пероксидазы, НАДН-дегидрогеназы), металлопротеидов (аконитазы и др.);
  • внеклеточное (транспортное): свободное железо плазмы и железосвязывающие сывороточные белки (трансферрин, лактоферрин), участвующие в транспорте железа;
  • депонированное железо находится в организме в виде двух белковых соединений - ферритина и гемосидерина - с преимущественным отложением в печени, селезенке и мышцах (включается в обмен при недостаточности клеточного железа).

Замечено, что железодефицитные состояния встречаются гораздо чаще, чем малое содержание других микроэлементов или витаминов и являются самой распространенной патологией среди населения различных стран!

Недостаток железа в организме, причины и проявления

Недостаток железа возникает в результате несоответствия между потребностями организма в железе и его поступлением (или потерями). Железодефицитные состояния когут варьировать от скрытого дефицита железа (прелатентный и латентный дефицит железа) до железодефицитной анемии (ЖДА) - клинико-гематологического симптомокомплекса, характеризующегося нарушением образования гемоглобина вследствие дефицита железа в сыворотке крови и костном мозге, а также развитием трофических нарушений в органах и тканях.

При наличии дефицита железа происходит последовательное истощение основных его фондов. Фонд депонированного железа в условиях дефицита истощается в первую очередь. При этом количества в организме этого металла, необходимого для функционирования тканевых ферментов и синтеза гема, достаточно и клинических признаков дефицита железа нет. Фонд железа в составе транспортных белков ослабляется после истощения запасов депо. При уменьшении железа в составе транспортных белков возникает дефицит его в тканях, вследствие чего происходит снижение активности железосодержащих тканевых ферментов. Клинически это проявляется развитием сидеропенического синдрома. Истощение гемового фонда железа происходит в последнюю очередь. Уменьшение запасов этого металла в составе гемоглобина приводит к нарушению транспорта кислорода в ткани, что проявляется развитием анемического синдрома.

Причины развития железодефицита/ЖДА

Дефицит железа развивается как следствие неадекватного его поступления в организм, особенно на фоне повышенной потребности, увеличения потерь железа с кровью либо на фоне снижения абсорбции железа его из ЖКТ (см. табл. 4).

Лечение и профилактика

Своевременная диагностика и коррекция стадий ЖДС (предлатентного и латентного дефицита железа), предшествующих ЖДА, позволяют предупреждать ее развитие и связанные с ней нарушения в работе организма.

Целью терапии железодефицитных состояний является устранение дефицита железа до полного восстановления его запасов в организме. Для этого, с одной стороны, необходимо устранить причины, приведшие к развитию ЖДС, а с другой - проводить возмещение дефицита железа в организме.

Принципы лечения железодефицитных состояний сформулированы Л.И. Идельсоном еще в 1981 г. и остаются актуальными в настоящее время:

  • возместить дефицит железа только с помощью диетотерапии без препаратов железа невозможно;
  • терапия ЖДА должна проводиться преимущественно пероральными препаратами железа;
  • терапия не должна прекращаться после нормализации уровня гемоглобина;
  • гемотрансфузии при ЖДА должны проводиться только по жизненным показаниям.

Что касается терапии ЖДС у бе-ременных и детей, пациентов с патологией ЖКТ и пожилых пациентов, то ВОЗ настоятельно рекомендует применять железодержащие препараты на основе глюконата, фумарата либо других безопасных органических солей у данных пациентов в связи с более высокой усвояемостью органических солей железа и лучшей переносимостью.

Такого же мнения придерживается и Британское общество гастроэнтерологов. Для лечения железодефицитной анемии рекомендуют использовать органические соли двухвалентного железа (глюконат, фумарат) в жидкой форме как высокоэффективные и хорошо переносимые.

С учетом данных рекомендаций огромный интерес вызывает французский препарат ТОТЕМА на основе органической соли 2-х валентного железа (глюконат железа II) и эссенциальных микроэлементов - меди и марганца, производства компании Laboratoire Innotech International.

Препарат ТОТЕМА представляет собой раствор для орального применения в ампулах по 10 мл. Каждая упаковка содержит 20 ампул.

Действующие вещества препарата ТОТЕМА и их количество в 1 апмуле (10 мг):

  • Железа (в виде железа глюконата) - 50 мг;
  • Марганца (в виде марганца глюконата) - 1,33 мг;
  • Меди (в виде меди глюконата) - 0, 7 мг

Уникальный состав препарата ТОТЕМА максимально соответствует физиологии обмена железа, где марганец и медь являются синергистами железа.

Исследованиями доказано, что в организме человека железо, медь и марганец находятся в конкурентном динамическом равновесии. Повышенное поступление в организм одного из них нарушает баланс других за счет потребления этим микроэлементом белков-переносчиков. В то же время при введении в организм сразу трех микроэлементов наблюдается их синергизм.

В практике любого врача или фармацевта основными критериями, при выборе конкретного препарата всегда являються: максимально высокая эффективность и безопасность, а также хорошая переносимость препарата. Данным критериям на все 100 % соответствует препарат ТОТЕМА, не имеющий аналогов на фармацевтическом рынке Украины.

Свойства препарата ТОТЕМА, обеспечивающие максимальную эффективность препарата

    • Основа препарата ТОТЕМА - органическая соль 2-х валентного железа

Органичность и валентность железосодержащих солей в препаратах для терапии ЖДС определяют эффективность и безопасность препарата.

Что касается валентности соли железа, установлено, что при поступлении в организм железо всасывается через магний содержащие белки-транспортеры 2-х валентних металлов, поэтому 2-х валентные соли - быстрей и эффективней абсорбируются, чем 3-х валентные солевые соединения, которые еще проходят процедуру восстановления, а потом только происходит их частичное всасывание.

Также известно, что органические соли железа (глюконат железа) отличаются более высокой усвояемостью и лучшей переносимостью по сравнению с неорганическими, за счет более высокой физиологичности.

    • Синергичность действующих веществ

Медь и марганец в составе препарата ТОТЕМА проявляют синергичность в отношении железа, повышая его адсорбцию следующим образом:

  • марганец посредством особых белков (ДМТ1-белки), являющихся ион-транспортерами двухвалентных металлов с помощью которых глюконат железа всасывается в дуоденальных энтероцитах, а также происходит рецептор-опосредованный захват железа из трансферрина внутрь клеток;
  • медь является составляющей медьзависимых феррооксидаз: гефестина (на базальной мембране энтероцитов) и церулоплазмина (в плазме крови) посредством которых железо окисляется до трехвалентного состояния, что является обязательным условием в первом случае - адсорбции железа в энтероциты, а во втором - дальнейшего связывания железа с транспортным белком-трансферрином.

Марганец и медь также наряду с железом принимают участие в синтезе гемоглобина. Марганец путем регуляции уровня железа в митохондриях с помощью Mn-зависимой супероксид редуктазы. Медь является основным активатором гемоглобина.

Еще одним преимуществом присутствия в составе препарата ТОТЕМА меди и марганца является то, что они обеспечивают антиоксидантную защиту в организме человека, посредством церрулоплазмина (медь) и спецефических супероксид дисмутаз (медь, марганец).

    • Жидкая лекарственная форма препарата Тотема

При пероральном приеме раствор равномерно распределяется по слизистой, таким образом, обеспечивая максимальный контакт препарата с абсорбирующей поверхностью кишечных ворсинок и следовательно максимальную всасываемость действующих веществ.

Свойства препарата ТОТЕМА, обеспечивающие максимальную безопасность при эффективной терапии ЖДС

    • Оптимальное усвоение железа без развития оксидантного стресса

Чрезвычайно важным моментом при лечении ЖДС препаратами железа является обеспечение максимальной антиоксидантной защиты. Доказанным является тот факт, что при лечении ЖДС препаратами, содержащими только железо, снижается синтез антиоксидантного фермента Mn-супероксиддис-мутазы, вследствие конкуренции Fe с Mn за участок связывания на уровне транскрипции данного фермента. Учитывая, что на фоне предшествующего дефицита железа, уже снижена активность каталазы, разлагающей перекись водорода, а также на фоне гипоксии повышено перекисное окисление липидов, дополнительное снижение антиоксидантной защиты приводит к активному повреждению тканей, контактирующих с ионами железа (слизистые ЖКТ, печень и молодые эритроциты).

Избежать столь сильнейшего оксидантного стресса и в тоже время эффективно восполнить дефицит железа позволяет сбалансированный состав препарата ТОТЕМА. Так как именно медь и марганец - микроэлементы, обеспечивающие функционирование антиоксидантной системы (медь в составе церулоплазмина и супероксиддисмутазы, марганец - в составе супероксиддисмутазы), что обеспечивает ингибирование супероксидного и ферритинзависимого перикисного окисления липидов.

    • Форма выпуска - ампулы - низкий риск отравления железом

При употреблении препаратов железа важно соблюдать рекомендованный дозовый режим и комплаентость так как передозировка солями железа может привести к раздражению и некрозу желудочно-кишечного тракта, особенно у детей. В этом плане ампульная форма выпуска препарата ТОТЕМА снижает риск передозивки (особенно у детей), в связи с особенностью открытия ампул.

    • Применение у детей/беременных или кормящих женщин

Безопасность применения препарата ТОТЕМА у детей подтверждена клиническими исследованиями, в результате чего препарат разрешен к применению у детей с 1-го месяца жизни. Также в результате ограниченных наблюдений относительно применения препарата ТОТЕМА беременными и кормящими женщинами не выявлено нежелательных эффектов относительно беременных, течения беременности, плода и новорожденного. На этом основании препарат разрешен к применению женщинам в период кормления грудью и беременным на протяжении второго и третього триместров беременности или начиная с 4-го месяца беременности.

Свойства препарата ТОТЕМА, обеспечивающие хорошую переносимость

    • Более быстрая абсорбция питьевого раствора, минимальное раздражение слизистой оболочки ЖКТ

В отличие от таблетированных лекарственных форм, суспензия препарата ТОТЕМА не скапливается локально в большой концентрации, а распределяется равномерно по всей площади адсорбирующей поверхности тонкого кишечника, что снижает к минимуму раздражение слизистой оболочки ЖКТ и способствует более быстрой адсорбции действующих веществ, обеспечивая тем самым хорошую переносимость препарата.

Согласно инструкции по медицинскому применению, препарат ТОТЕМА показан как для лечения железодефицитной анемии так и для профилактики железодефицита у беременных женщин, недоношенных младенцев, близнецов или детей, рожденных женщинами с железодефицитом, а также у людей, чей рацион питания не содержит достаточного количества железа.

Противопоказан данный препарат при: избытке железа в организме (особенно на фоне нормоцитарной анемии или гиперсидероемии, например талассемия), регулярных гемотрансфузиях; одновременном применении парентеральных форм железа; кишечной непроходимости; железорефракторной анемии; анемии, связанной с недостаточностью медулярного кроветворения; гиперчувствительности к компонентам препарата; непереносимости фруктозы.

Принимать препарат за 30 минут до начала приема пищи или спустя 2 часа после еды;

  • Для лучшего всасывания и снижения возможных нежелательных явлений со стороны желудочно-кишечного тракта рекомендуется разбавлять содержимое ампулы в минимум 100 мл воды или сока;
  • Начинать прием препарата (первые 2–3 дня) с минимальных доз 50 мг (1 ампула), затем постепенно увеличивать дозу до необходимой лечебной 100–200 мг (зависит от тяжести дефицитного состояния) и принимать в лечебной дозе до нормализации уровня гемоглобина. Далее перейти на профилактическую дозировку до нормализации показателей депо железа. Для пациентов с воспалительными заболеваниями ЖКТ разовую дозу можно делить на 2–3 приема для лучшей переносимости. Полный курс лечения, как правило, составляет 2–4 месяца, в зависимости от первоначальной тяжести железодефицита;
  • По возможности принимать препарат через трубочку или споласкивать ротовую полость сразу после приема препарата, чтобы снизить вероятность окрашивания эмали зубов.

Таким образом, ТОТЕМА представляет собой уникальный комплексный антианемический препарат, содержащий три важнейших незаменимых элемента - железо, медь и марганец - в оптимальных дозах, обеспечивающих физиологические потребности организма в этих микроэлементах, характеризующийся максимальной эффективностью, безопасностью и отличной переносимостью, что несомненно делает его препаратом выбора в корректировке железодефицитных состояний и лечении железодефицитной анемии!

Лина Овсиенко, клинический провизор

ЖЕЛЕЗО (лат. Ferrum), Fe, химический элемент VIII группы периодической системы, атомный номер 26, атомная масса 55,847. Происхождение как латинского, так и русского названий элемента однозначно не установлено. Природное железо представляет собой смесь четырех нуклидов с массовыми числами 54 (содержание в природной смеси 5,82% по массе), 56 (91,66%), 57 (2,19%) и 58 (0,33%). Конфигурация двух внешних электронных слоев 3s 2 p 6 d 6 4s 2 . Обычно образует соединения в степенях окисления +3 (валентность III) и +2 (валентность II). Известны также соединения с атомами железа в степенях окисления +4, +6 и некоторых других.

В периодической системе Менделеева железо входит в группу VIIIВ. В четвертом периоде, к которому принадлежит и железо, в эту группу входят, кроме железа, также кобальт (Co) и никель (Ni) . Эти три элемента образуют триаду и обладают сходными свойствами.

Радиус нейтрального атома железа 0,126 нм, радиус иона Fe 2+ — 0,080 нм, иона Fe 3+ — 0,067 нм. Энергии последовательной ионизации атома железа 7,893, 16,18, 30,65, 57, 79 эВ. Сродство к электрону 0,58 эв. По шкале Полинга электроотрицательность железа около 1,8.

Железо высокой чистоты — это блестящий серебристо-серый, пластичный металл, хорошо поддающийся различным способам механичской обработки.

Физические и химические свойства: при температурах от комнатной и до 917°C, а также в интервале температур 1394-1535°C существует -Fe с кубической объемно центрированной решеткой, при комнатной температуре параметр решетки а = 0,286645 нм. При температурах 917-1394°C устойчиво -Fe с кубической гранецентрированной решеткой Т (а = 0,36468 нм). При температурах от комнатной до 769°C (так называемая точка Кюри) железо обладает сильными магнитными свойствами (оно, как говорят, ферромагнитно), при более высоких температурах железо ведет себя как парамагнетик. Иногда парамагнитное -Fe с кубической объемно центрированной решеткой, устойчивое при температурах от 769 до 917°C, рассматривают как модификацию железа, а -Fe, устойчивое при высоких температурах (1394-1535°C), называют по традиции -Fe (представления о существовании четырех модификаций железа возникли тогда, когда еще не существовал рентгеноструктурный анализ и не было объективной информации о внутреннем строении железа). Температура плавления 1535°C, температура кипения 2750°C, плотность 7,87 г/см 3 . Стандартный потенциал пары Fe 2+ /Fe 0 –0,447В, пары Fe 3+ /Fe 2+ +0,771В.

При хранении на воздухе при температуре до 200°C железо постепенно покрывается плотной пленкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближенно ее химическую формулу можно записать как Fe 2 О 3 ·xН 2 О.

С кислородом (O) железо реагирует при нагревании. При сгорании железа на воздухе образуется оксид Fe 2 О 3 , при сгорании в чистом кислороде — оксид Fe 3 О 4 . Если кислород или воздух пропускать через расплавленное железо, то образуется оксид FeО. При нагревании порошка серы (S) и железа образуется сульфид, приближенную формулу которого можно записать как FeS.

Железо при нагревании реагирует с галогенами . Так как FeF 3 нелетуч, железо устойчиво к действию фтора (F) до температуры 200-300°C. При хлорировании железа (при температуре около 200°C) образуется летучий FeСl 3 . Если взаимодействие железа и брома (Br) протекает при комнатной температуре или при нагревании и повышенном давлении паров брома, то образуется FeBr 3 . При нагревании FeСl 3 и, особенно, FeBr 3 отщепляют галоген и превращаются в галогениды железа (II). При взаимодействии железа и иода (I) образуется иодид Fe 3 I 8 .

При нагревании железо реагирует с азотом (N) , образуя нитрид железа Fe 3 N, с фосфором (P) , образуя фосфиды FeP, Fe 2 P и Fe 3 P, с углеродом (C) , образуя карбид Fe 3 C, с кремнием (Si) , образуя несколько силицидов, например, FeSi.

При повышенном давлении металлическое железо реагирует с монооксидом углерода СО, причем образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO) 5 . Известны также карбонилы железа составов Fe 2 (CO) 9 и Fe 3 (CO) 12 . Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена состава .

Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. В концентрированной серной и азотной кислотах железо не растворяется, так как прочная оксидная пленка пассивирует его поверхность.

С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа (II):

Fe + 2HCl = FeCl 2 + H 2

Fe + H 2 SO 4 = FeSO 4 + H 2

При взаимодействии железа с приблизительно 70%-й серной кислотой реакция протекает с образованием сульфата железа (III):

2Fe + 4H 2 SO 4 = Fe 2 (SO 4) 3 + SO 2 + 4H 2 O

Оксид железа (II) FeО обладает основными свойствами, ему отвечает основание Fe(ОН) 2 . Оксид железа (III) Fe 2 O 3 слабо амфотерен, ему отвечает еще более слабое, чем Fe(ОН) 2 , основание Fe(ОН) 3 , которое реагирует с кислотами:

2Fe(ОН) 3 + 3H 2 SO 4 = Fe 2 (SO 4) 3 + 6H 2 O

Гидроксид железа (III) Fe(ОН) 3 проявляет слабо амфотерные свойства; он способен реагировать только с концентрированными растворами щелочей:

Fe(ОН) 3 + КОН = К

Образующиеся при этом гидроксокомплексы железа(III) устойчивы в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причем в осадок выпадает гидроксид железа (III) Fe(OH) 3 .

Соединения железа (III) в растворах восстанавливаются металлическим железом:

Fe + 2FeCl 3 = 3FeCl 2

При хранении водных растворов солей железа (II) наблюдается окисление железа (II) до железа (III):

4FeCl 2 + O 2 + 2H 2 O = 4Fe(OH)Cl 2

Из солей железа (II) в водных растворах устойчива соль Мора — двойной сульфат аммония и железа (II) (NH 4) 2 Fe(SO 4) 2 ·6Н 2 О.

Железо (III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO 4) 2 — железокалиевые квасцы, (NH 4)Fe(SO 4) 2 — железоаммонийные квасцы и т.д.

При действии газообразного хлора (Cl) или озона на щелочные растворы соединений железа (III) образуются соединения железа (VI) — ферраты, например, феррат (VI) калия (K) : K 2 FeO 4 . Имеются сообщения о получении под действием сильных окислителей соединений железа (VIII).

Для обнаружения в растворе соединений железа (III) используют качественную реакцию ионов Fe 3+ с тиоцианат-ионами CNS – . При взаимодействии ионов Fe 3+ с анионами CNS – образуется ярко-красный роданид железа Fe(CNS) 3 . Другим реактивом на ионы Fe 3+ служит гексацианоферрат (II) калия (K) : K 4 (ранее это вещество называли желтой кровяной солью). При взаимодействии ионов Fe 3+ и 4– выпадает ярко-синий осадок.

Реактивом на ионы Fe 2+ в растворе может служить раствор гексацианоферрат (III) калия (K) K 3 , ранее называвшегося красной кровяной солью. При взаимодействии ионов Fe 3+ и 3– выпадает ярко-синий осадок такого же состава, как и в случае взаимодействия ионов Fe 3+ и 4– .

Сплавы железа с углеродом: железо используется главным образом в сплавах, прежде всего в сплавах с углеродом (C) — различных чугунах и сталях. В чугуне содержание углерода выше 2,14 % по массе (обычно — на уровне 3,5-4%), в сталях содержание углерода более низкое (обычно на уровне 0.8-1 %).

Чугун получают в домнах. Домна представляет собой гигантский (высотой до 30-40 м) усеченный конус, полый внутри. Стенки домны изнутри выложены огнеупорным кирпичом, толщина кладки составляет несколько метров. Сверху в домну вагонетками загружают обогащенную (освобожденную от пустой породы) железную руду, восстановитель кокс (каменный уголь специальных сортов, подвергнутый коксованию — нагреванию при температуре около 1000°C без доступа воздуха), а также плавильные материалы (известняк и другие), способствующие отделению от выплавляемого металла примесей — шлака. Снизу в домну подают дутье (чистый кислород (O) или воздух, обогащенный кислородом (O)). По мере того, как загруженные в домну материалы опускаются, их температура поднимается до 1200-1300°C. В результате реакций восстановления, протекающих главным образом с участием кокса С и СО:

Fe 2 O 3 + 3C = 2Fe + 3CO;

Fe 2 O 3 + 3CО = 2Fe + 3CO 2

возникает металлическое железо, которое насыщается углеродом (C) и стекает вниз.

Этот расплав периодически выпускают из домны через специальное отверстие — клетку — и дают расплаву застыть в специальных формах. Чугун бывает белый, так называемый передельный (его используют для получения стали) и серый, или литьевой. Белый чугун — это твердый раствор углерода (C) в железе. В микроструктуре серого чугуна можно различить микрокристаллики графита. Из-за наличия графита серый чугун оставляет след на белой бумаге.

Чугун хрупок, при ударе он колется, поэтому из него нельзя изготавливать пружины, рессоры, любые изделия, которые должны работать на изгиб.

Твердый чугун легче расплавленного, так что при его затвердевании происходит не сжатие (как обычно при затвердевании металлов и сплавов), а расширение. Эта особенность позволяет изготавливать из чугуна различные отливки, в том числе использовать его как материал для художественного литья.

Если содержание углерода (C) в чугуне снизить до 1,0-1,5%, то образуется сталь. Стали бывают углеродистыми (в таких сталях нет других компонентов, кроме Fe и C) и легированными (такие стали содержат добавки хрома (Cr) , никеля (Ni) , молибдена (Mo) , кобальта (Co) и других металлов, улучшающие механические и иные свойства стали).

Стали получают, перерабатывая чугун и металлический лом в кислородном конвертере, в электродуговой или мартеновской печах. При такой переработке снижается содержание углерода (C) в сплаве до требуемого уровня, как говорят, избыточный углерод (C) выгорает.

Физические свойства стали существенно отличаются от свойств чугуна: сталь упруга, ее можно ковать, прокатывать. Так как сталь, в отличие от чугуна, при затвердевании сжимается, то полученные стальные отливки подвергают обжатию на прокатных станах. После прокатки в объеме металла исчезают пустоты и раковины, появившиеся при затвердевании расплавов.

Производство сталей имеет в России давние глубокие традиции, и полученные нашими металлургами стали отличаются высоким качеством.

История получения железа: железо играло и играет исключительную роль в материальной истории человечества. Первое металлическое железо, попавшее в руки человека, имело, вероятно, метеоритное происхождение. Руды железа широко распространены и часто встречаются даже на поверхности Земли, но самородное железо на поверхности крайне редко. Вероятно, еще несколько тысяч лет назад человек заметил, что после горения костра в некоторых случаях наблюдается образование железа из тех кусков руды, которые случайно оказались в костре. При горении костра восстановление железа из руды происходит за счет реакции руды как непосредственно с углем, так и с образующимся при горении оксидом углерода (II) СО. Возможность получения железа из руд существенно облегчило обнаружение того факта, что при нагревании руды с углем возникает металл, который далее можно дополнительно очистить при ковке. Получение железа из руды с помощью сыродутного процесса было изобретено в Западной Азии во 2-м тысячелетии до нашей эры. Период с 9 – 7 века до нашей эры, когда у многих племен Европы и Азии развилась металлургия железа, получил название железного века, пришедшего на смену бронзовому веку. Усовершенствование способов дутия (естественную тягу сменили меха) и увеличение высоты горна (появились низкошахтные печи - домницы) привело к получению чугуна, который стали широко выплавлять в Западной Европе с 14 века. Полученный чугун переделывали в сталь. С середины 18 века в доменном процессе вместо древесного угля начали использовать каменно-угольный кокс. В дальнейшем способы получения железа из руд были значительно усовершенствованы, и в настоящее время для этого используют специальные устройства — домны, кислородные конвертеры, электродуговые печи.

Нахождение в природе: в земной коре железо распространено достаточно широко — на его долю приходится около 4,1% массы земной коры (4-е место среди всех элементов, 2-е среди металлов). Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красные железняки (руда гематит, Fe 2 O 3 ; содержит до 70% Fe), магнитные железняки (руда магнетит, Fe 3 О 4 ; содержит 72,4% Fe), бурые железняки (руда гидрогетит НFeO 2 ·n H 2 O), а также шпатовые железняки (руда сидерит, карбонат железа, FeСО 3 ; содержит около 48% Fe). В природе встречаются также большие месторождения пирита FeS 2 (другие названия — серный колчедан, железный колчедан, дисульфид железа и другие), но руды с высоким содержанием серы пока практического значения не имеют. По запасам железных руд Россия занимает первое место в мире. В морской воде 1·10 –5 — 1·10 –8 % железа.

Применение железа, его сплавов и соединений: чистое железо имеет довольно ограниченное применение. Его используют при изготовлении сердечников электромагнитов, как катализатор химических процессов, для некоторых других целей. Но сплавы железа — чугун и сталь — составляют основу современной техники. Находят широкое применение и многие соединения железа. Так, сульфат железа (III) используют при водоподготовке, оксиды и цианид железа служат пигментами при изготовлении красителей и так далее.

Биологическая роль: железо присутствует в организмах всех растений и животных как микроэлемент , то есть в очень малых количествах (в среднем около 0,02%). Однако железобактерии, использующие энергию окисления железа (II) в железо (III) для хемосинтеза, могут накапливать в своих клетках до 17-20% железа. Основная биологическая функция железа — участие в транспорте кислорода (O) и окислительных процессах. Эту функцию железа выполняет в составе сложных белков — гемопротеидов, простетической группой которых является железопорфириновый комплекс — гем. Среди важнейших гемопротеидов дыхательные пигменты гемоглобин и миоглобин, универсальные переносчики электронов в реакциях клеточного дыхания, окисления и фотосинеза цитохромы, ферменты каталоза и пероксида, и других. У некоторых беспозвоночных железосодержащие дыхательные пигменты гелоэритрин и хлорокруорин имеют отличное от гемоглобинов строение. При биосинтезе гемопротеидов железо переходит к ним от белка ферритина, осуществляющего запасание и транспорт железа. Этот белок, одна молекула которого включает около 4 500 атомов железа, концентрируется в печени, селезенке, костном мозге и слизистой кишечника млекопитающих и человека. Суточная потребность человека в железе (6-20 мг) с избытком покрывается пищей (железом богаты мясо, печень, яйца, хлеб, шпинат, свекла и другие). В организме среднего человека (масса тела 70 кг) содержится 4,2 г железа, в 1 л крови — около 450 мг. При недостатке железа в организме развивается железистая анемия, которую лечат с помощью препаратов, содержащих железо. Препараты железа применяются и как общеукрепляющие средства. Избыточная доза железа (200 мг и выше) может оказывать токсичное действие. Железо также необходимо для нормального развития растений, поэтому существуют микроудобрения на основе препаратов железа.

Трудно переоценить роль железа для человеческого организма, ведь именно оно способствует «творению» крови, его содержание влияет на уровень гемоглобина и миоглобина, железо нормализует работу ферментной системы. Но что это за элемент с точки зрения химии? Какая валентность железа? Об этом будет рассказано в данной статье.

Немного истории

Человечество знало об этом химическом элементе и даже владело изделиями из него еще в IV веке до нашей эры. Это были народы Древнего Египта и Шумеры. Именно они первые начали изготавливать украшения, оружие из сплава железа и никеля, которые были найдены при археологических раскопках и тщательно исследованы химиками.

Немного позже, племена арийцев, переселившиеся в Азию, научилось добывать твердое железо из руды. Оно было настолько ценным для людей того времени, что изделия покрывали золотом!

Характеристика железа

Железо (Fe) стоит на четвертом месте по содержанию его в недрах земной коры. Оно занимает место в 7 группе 4 периода и имеет номер 26 в химической таблице элементов Менделеева. Валентность железа имеет прямую зависимость от своего положения в таблице. Но об этом позже.

Данный металл наиболее всего распространен в природе в виде руды, встречается в воде как минерал, а также в различных соединениях.

Наибольшее количество запасов железа в виде руды, находится в России, Австралии, Украине, Бразилии, США, Индии, Канаде.

Физические свойства

Прежде чем переходить к валентности железа, необходимо подробнее рассмотреть его физические свойства, так сказать, приглядеться к нему поближе.

Этот металл имеет достаточно пластичный, но способен к увеличению твердости путем его взаимодействия с другими элементами (например, с углеродом). Также он обладает магнитными свойствами.

Во влажной среде железо может корродировать, то есть ржаветь. Хотя абсолютно чистый металл устойчивее к влаге, но если в нем есть примеси, именно они провоцируют коррозию.

Железо хорошо взаимодействует с кислотной средой, даже может образовывать соли железной кислоты (при условии сильного окислителя).

В воздушной среде быстро покрывается оксидной пленкой, которая защищает его от взаимодействий.

Химические свойства

Также этот элемент обладает рядом химических свойств. Железо, как и остальные элементы таблицы Менделеева, имеет заряд атомного ядра, который соответствует порядковому номеру +26. А возле ядра вращается 26 электронов.

А вообще, если рассматривать свойства железа - химического элемента, то он является металлом с невысокой активной способностью.

Взаимодействуя с окислителями более слабыми, железо образует соединения, где оно двухвалентно (то есть его степень окисления +2). А если с сильными окислителями, то степень окисления железа достигает +3 (то есть валентность его становится равной 3).

При взаимодействии с химическими элементами, которые не являются металлами, Fe выступает по отношению к ним восстановителем, при этом степень окисления его становиться, кроме +2 и +3, даже +4, +5, +6. Такие соединения имеют очень сильные окислительные свойства.

Как уже отмечалось выше, железо в воздушной среде покрывается оксидной пленкой. А при нагревании скорость реакции повышается и может образоваться оксид железа с валентностью 2 (температура менее 570 градусов по Цельсию) или оксид с валентностью 3 (температурный показатель более 570 градусов).

Взаимодействие Fe с галогенами, приводит к образованию солей. Элементы фтор и хлор окисляют его до +3. Бром же - до +2 или +3 (все зависит от того, какие условия осуществления химического превращения при взаимодействии с железом).

Вступая во взаимодействия с йодом, элемент окисляется до +2.

Нагревая железо и серу, получается сульфид железа с валентностью 2.

Если феррум расплавить и соединить его с углеродом, фосфором, кремнием, бором, азотом, то получатся соединения называемые сплавами.

Железо является металлом, поэтому оно вступает во взаимодействие и с кислотами (об этом кратко также говорилось чуть выше). Например, кислоты серная и азотная, имеющие высокую концентрацию, в среде с пониженной температурой, на железо не оказывают воздействия. Но стоит ей повысится, как происходит реакция, в результате которой железо окисляется до +3.

Чем выше концентрация кислоты, тем большую температуру необходимо дать.

Нагревая 2-х валентное железо в воде, получим его оксид и водород.

Также Fe обладает способностью вытеснять из водных растворов солей металлы, которые имеют пониженную активность. При этом он окисляется до +2.

При повышении температуры, железо восстанавливает металлы из оксидов.

Что такое валентность

Уже в предыдущем разделе немного встречалось понятие валентности, а также степени окисления. Пришло время рассмотреть валентность железа.

Но для начала необходимо понять, что это вообще за такое свойство химических элементов.

Химические вещества почти всегда постоянны в своем составе. Например, в формуле воды Н2О - 1 атом кислорода и 2 атома водорода. То же самое и с другими соединениями, в которых задействованы два химических элемента, один из которых водород: к 1 атому химического элемента может добавиться 1-4 атома водорода. Но никак не наоборот! А потому, видно, что водород присоединяет к себе всего 1 атом другого вещества. И именно это явление называют валентностью - способностью атомов химического элемента присоединять конкретное количество атомов других элементов.

Значение валентности и графическая формула

Есть элементы таблицы Менделеева, которые обладают постоянной валентностью - это кислород и водород.

А есть такие химические элементы, у которых она изменяется. Например, железо чаще 2-х и 3-х валентно, сера 2, 4, 6-ти, углерод 2 и 4-х. Это элементы с переменной валентностью.

Также, зная валентность одного из элементов в соединении, можно определить валентность другого.

Валентность железа

Как было отмечено, железо относится к элементам с переменной валентностью. И она может колебаться не только между показателями 2 и 3, но и достигать 4, 5 и даже 6.

Конечно, более подробно изучает валентность железа Рассмотрим этот механизм кратко на уровне простейших частиц.

Железо является д-элементом, к которому причисляется еще 31 элемент таблицы Менделеева (это 4-7 периоды). С возрастанием порядкового номера, свойства д-элементов приобретают небольшие изменения. Атомный радиус у этих веществ также медленно возрастает. Они обладают переменной валентностью, которая зависит от того, что предвнешний д-электронный подуровень является незавершенным.

Потому для железа валентными есть не только с-электроны, находящиеся во внешнем слое, но и неспаренные 3д-электроны предвнешнего слоя. И, как следствие, валентность Fe в химических соединениях может равнятся 2, 3, 4, 5, 6. В основном, она равна 2 и 3 - это более устойчивые с другими веществами. В менее устойчивых - он проявляет валентность 4, 5, 6. Но, такие соединения встречаются реже.

Двухвалентный феррум

При взаимодействии 2 валентного железа с водой получается оксид железа (2). Такое соединение обладает черным цветом. Достаточно легко взаимодействует с соляной (малой концентрации) и азотной (высокой концентрации) кислотами.

Если такому оксиду 2-х валентного железа провзаимодействовать или с водородом (температура 350 градусов по Цельсию), или с углеродом (коксом) при 1000 градусов, то оно восстанавливается до чистого состояния.

Добывают оксид железа 2-х валентного такими способами:

  • через соединение оксида 3-х валентного железа с угарным газом;
  • при нагревании чистого Fe, при этом низкое давление кислорода;
  • при раскладывании оксалата 2-х валентного железа в вакуумной среде;
  • при взаимодействии чистого железа с его оксидами, температура при этом 900-1000 градусов по Цельсию.

Что касается природной среды, то оксид железа 2-х валентного, присутствует в виде минерала вюстита.

Есть еще способ, как в растворе определить валентность железа - в данном случае, имеющего ее показатель 2. Необходимо провести реакции с красной солью (гексацианоферрат калия) и с щелочью. В первом случае наблюдается получение осадка темно-синего цвета - комплексной соли железа 2-х валентного. Во втором - получение темного серо-зеленого осадка - гидроксида железа также 2-х валентного, в то время, как гидроксид железа 3-х валентного имеет цвет в растворе темно-бурый.

Трехвалентное железо

Оксид 3-х валентного феррума имеет порошкообразную структуру, цвет которой красно-коричневый. Имеет также наименования: окись железа, красный пигмент, пищевой краситель, крокус.

В природе это вещество встречается в виде минерала - гематита.

Оксид такого железа с водой уже не взаимодействует. Но соединяется с кислотами и щелочами.

Применяется оксид железа (3) для окрашивания материалов, применяемых в строительстве:

  • кирпичей;
  • цемента;
  • керамических изделий;
  • бетона;
  • тротуарной плитки;
  • напольных покрытий (линолеум).

Железо в организме человека

Как отмечалось в начале статьи, вещество железо является важной составляющей человеческого организма.

Когда этого элемента является недостаточно, то могут возникнуть следующие последствия:

  • повышенная усталость и чувствительность к холоду;
  • сухость кожи;
  • снижение мозговой деятельности;
  • ухудшение прочности ногтевой пластины;
  • головокружение;
  • проблемы с пищеварением;
  • седина и выпадение волос.

Накапливается железо, как правило, в селезенке и печени, а также почках и поджелудочной железе.

В рационе человека должны быть продукты, содержащие железо:

  • говяжья печень;
  • гречневая каша;
  • арахис;
  • фисташки;
  • зеленый горошек консервированный;
  • сушенные белые грибы;
  • куриные яйца;
  • шпинат;
  • кизил;
  • яблоки;
  • груши;
  • персики;
  • свекла;
  • морепродукты.

Недостаток железа в крови, приводит к снижению гемоглобина и развитию такого заболевания, как железодефицитная анемия.

Loading...Loading...